The number of integer points on Vinogradov's quadric

被引:9
作者
Blomer, V. [1 ]
Bruedern, J. [2 ]
机构
[1] Univ Toronto, Dept Math, Toronto, ON M5S 2E4, Canada
[2] Univ Stuttgart, Inst Algebra & Zahlentheorie, D-70511 Stuttgart, Germany
来源
MONATSHEFTE FUR MATHEMATIK | 2010年 / 160卷 / 03期
关键词
Singular quadric; Integer points; Hyperbola method; EQUATIONS;
D O I
10.1007/s00605-008-0085-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An asymptotic formula is obtained for the number of integer solutions of bounded height on Vinogradov's quadric. Two leading terms are determined, and a strong estimate for the error term is given.
引用
收藏
页码:243 / 256
页数:14
相关论文
共 8 条
[1]  
BRUDERN J, 1995, EINFUHRUNG ANAL ZAHL
[2]   Some diophantine equations with almost all solutions trivial [J].
Greaves, G .
MATHEMATIKA, 1997, 44 (87) :14-36
[3]  
Rogovskaya N. N., 1986, Diophantine approximations, P78
[4]  
Skinner CM, 1997, Q J MATH, V48, P255
[5]  
TITCHMARSH EC, 1986, THEORY RIEMANN ZETA
[6]  
VAUGHAN R, 1997, HARDYLITTLEWOOD METH
[7]  
Vaughan RC, 1997, ACTA ARITH, V79, P193
[8]   On a certain nonary cubic form and related equations [J].
Vaughan, RC ;
Wooley, TD .
DUKE MATHEMATICAL JOURNAL, 1995, 80 (03) :669-735