Multiple elastic or rigid line inclusions in a multilayered orthotropic solid

被引:2
|
作者
Wang, B. L. [1 ]
Li, J. E. [2 ]
机构
[1] Harbin Inst Technol, Shenzhen Campus, Harbin 150001, Peoples R China
[2] Jinling Inst Technol, Sch Architectural Engn, Nanjing 211169, Peoples R China
基金
中国国家自然科学基金;
关键词
Line inclusions; Non-homogeneous material; Orthotropic material; Strain intensity factor; PIEZOELECTRIC SCREW DISLOCATION; STRESS-CONCENTRATION; ANTIPLANE PROBLEMS; CRACK; MODEL; INTENSITY; SHEAR; COMPOSITE; LAYERS;
D O I
10.1016/j.mechmat.2022.104306
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper studies the problem of multiple line inclusions in a non-homogeneous medium. The formulation and solutions for rigid line inclusions and homogeneous medium are special cases when the stiffness values of the inclusions are infinite and the non-homogeneity of the material vanishes. The model built in this study is capable of dealing with any material non-homogeneity (material properties vary continuously or in step-wise form), orthotropic mechanical properties, isotropic mechanical properties, and any number of parallel or collinear inclusions. More importantly, the inclusions are not limited to rigid (they can be elastic). Dependence of the inclusion tip fields on the strain intensity factor is given in closed form. Numerical results are given for the situations of mechanical load as well as thermal load applied in the medium.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Optimal control of cracks in elastic bodies with thin rigid inclusions
    Khludnev, Alexander M.
    Leugering, Guenter
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2011, 91 (02): : 125 - 137
  • [22] Shape control of thin rigid inclusions and cracks in elastic bodies
    Alexander M. Khludnev
    Archive of Applied Mechanics, 2013, 83 : 1493 - 1509
  • [23] Shape control of thin rigid inclusions and cracks in elastic bodies
    Khludnev, Alexander M.
    ARCHIVE OF APPLIED MECHANICS, 2013, 83 (10) : 1493 - 1509
  • [24] Choosing an optimal shape of thin rigid inclusions in elastic bodies
    V. V. Shcherbakov
    Journal of Applied Mechanics and Technical Physics, 2015, 56 : 321 - 329
  • [25] Dynamic behavior of a finite-sized elastic solid with multiple cavities and inclusions using BIEM
    Parvanova, S. L.
    Dineva, P. S.
    Manolis, G. D.
    ACTA MECHANICA, 2013, 224 (03) : 597 - 618
  • [26] Method of Direct Cutting-Out in Modeling Orthotropic Solids with Thin Elastic Inclusions Under Longitudinal Shear
    Vasil’ev K.V.
    Sulym H.T.
    Journal of Mathematical Sciences, 2023, 273 (1) : 61 - 78
  • [27] On junction problem with damage parameter for Timoshenko and rigid inclusions inside elastic body
    Khludnev, A. M.
    Popova, T. S.
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2020, 100 (08):
  • [28] Dispersion of rigid line inclusions as stiffeners and shear band instability triggers
    Goudarzi, M.
    Dal Corso, F.
    Bigoni, D.
    Simone, A.
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2021, 210 (210-211) : 255 - 272
  • [29] Interaction between multiple piezoelectric inclusions and a crack in a non-piezoelectric elastic matrix
    Yang, Hui-Feng
    Gao, Cun-Fa
    THEORETICAL AND APPLIED FRACTURE MECHANICS, 2015, 76 : 1 - 8
  • [30] Homogenization of elastic materials containing self-similar rigid micro-inclusions
    El Jarroudi, Mustapha
    Er-Riani, Mustapha
    CONTINUUM MECHANICS AND THERMODYNAMICS, 2019, 31 (02) : 457 - 474