OPERATOR INEQUALITIES VIA GEOMETRIC CONVEXITY

被引:9
作者
Sababheh, Mohammad [1 ]
Moradi, Hamid Reza [2 ]
Furuichi, Shigeru [3 ]
机构
[1] Princess Sumaya Univ Technol, Dept Basic Sci, Amman, Jordan
[2] Islamic Azad Univ, Young Researchers & Elite Club, Mashhad Branch, Mashhad, Razavi Khorasan, Iran
[3] Nihon Univ, Coll Humanities & Sci, Dept Informat Sci, Setagaya Ku, 3-25-40 Sakurajyousui, Tokyo 1568550, Japan
来源
MATHEMATICAL INEQUALITIES & APPLICATIONS | 2019年 / 22卷 / 04期
基金
日本学术振兴会;
关键词
Geometrically convex function; operator norm; norm inequality; numerical radius; NORM INEQUALITIES; NUMERICAL RADIUS; JENSEN;
D O I
10.7153/mia-2019-22-83
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The main goal of this article is to present new generalizations of some known inequalities for the numerical radius and unitarily invariant norms of Hilbert space operators. These extensions result from a special treatment of the so called geometrically convex functions. In the end, we present several scalar inequalities for such functions.
引用
收藏
页码:1215 / 1231
页数:17
相关论文
共 24 条