Genomic landscape of megakaryopoiesis and platelet function defects

被引:57
作者
Bianchi, Elisa [1 ]
Norfo, Ruggiero [1 ,2 ]
Pennucci, Valentina [1 ]
Zini, Roberta [1 ]
Manfredini, Rossella [1 ]
机构
[1] Univ Modena & Reggio Emilia, Dept Life Sci, Ctr Regenerat Med Stefano Ferrari, Via Gottardi 100, I-41125 Modena, Italy
[2] Univ Oxford, Weatherall Inst Mol Med, Haematopoiet Stem Cell Biol Lab, Oxford, England
关键词
TYROSINE KINASE JAK2; MYELOPROLIFERATIVE NEOPLASMS; MEGAKARYOBLASTIC LEUKEMIA; GLANZMANN THROMBASTHENIA; REFRACTORY-ANEMIA; ESSENTIAL THROMBOCYTHEMIA; PROPLATELET FORMATION; PRIMARY MYELOFIBROSIS; CLINICAL-SIGNIFICANCE; ACTIVATING MUTATION;
D O I
10.1182/blood-2015-07-607952
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Megakaryopoiesis is a complex, stepwise process that takes place largely in the bone marrow. At the apex of the hierarchy, hematopoietic stem cells undergo a number of lineage commitment decisions that ultimately lead to the production of polyploid megakaryocytes. On average, megakaryocytes release 10(11) platelets per day into the blood that repair vascular injuries and prevent excessive bleeding. This differentiation process is tightly controlled by exogenous and endogenous factors, which have been the topics of intense research in the hematopoietic field. Indeed, a skewing of megakaryocyte commitment and differentiation may entail the onset of myeloproliferative neoplasms and other preleukemic disorders together with acute megakaryoblastic leukemia, whereas quantitative or qualitative defects in platelet production can lead to inherited platelet disorders. The recent advent of next-generation sequencing has prompted mapping of the genomic landscape of these conditions to provide an accurate view of the underlying lesions. The aims of this review are to introduce the physiological pathways of megakaryopoiesis and to present landmark studies on acquired and inherited disorders that target them. These studies have not only introduced a new era in the fields of molecular medicine and targeted therapies but may also provide us with a better understanding of the mechanisms underlying normal megakaryopoiesis and thrombopoiesis that can inform efforts to create alternative sources of megakaryocytes and platelets.
引用
收藏
页码:1249 / 1259
页数:11
相关论文
共 100 条
[1]   Exome sequencing identifies NBEAL2 as the causative gene for gray platelet syndrome [J].
Albers, Cornelis A. ;
Cvejic, Ana ;
Favier, Remi ;
Bouwmans, Evelien E. ;
Alessi, Marie-Christine ;
Bertone, Paul ;
Jordan, Gregory ;
Kettleborough, Ross N. W. ;
Kiddle, Graham ;
Kostadima, Myrto ;
Read, Randy J. ;
Sipos, Botond ;
Sivapalaratnam, Suthesh ;
Smethurst, Peter A. ;
Stephens, Jonathan ;
Voss, Katrin ;
Nurden, Alan ;
Rendon, Augusto ;
Nurden, Paquita ;
Ouwehand, Willem H. .
NATURE GENETICS, 2011, 43 (08) :735-737
[2]   Perturbed hematopoiesis in the Tc1 mouse model of Down syndrome [J].
Alford, Kate A. ;
Slender, Amy ;
Vanes, Lesley ;
Li, Zhe ;
Fisher, Elizabeth M. C. ;
Nizetic, Dean ;
Orkin, Stuart H. ;
Roberts, Irene ;
Tybulewicz, Victor L. J. .
BLOOD, 2010, 115 (14) :2928-2937
[3]   Proplatelet formation in heterozygous Bernard-Soulier syndrome type Bolzano [J].
Balduini, A. ;
Malara, A. ;
Pecci, A. ;
Badalucco, S. ;
Bozzi, V. ;
Pallotta, I. ;
Noris, P. ;
Torti, M. ;
Balduini, C. L. .
JOURNAL OF THROMBOSIS AND HAEMOSTASIS, 2009, 7 (03) :478-484
[4]   Thrombopoietin regulates c-Myb expression by modulating micro RNA 150 expression [J].
Barroga, Charlene F. ;
Pham, Hang ;
Kaushansky, Kenneth .
EXPERIMENTAL HEMATOLOGY, 2008, 36 (12) :1585-1592
[5]   Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders [J].
Baxter, EJ ;
Scott, LM ;
Campbell, PJ ;
East, C ;
Fourouclas, N ;
Swanton, S ;
Vassiliou, GS ;
Bench, AJ ;
Boyd, EM ;
Curtin, N ;
Scott, MA ;
Erber, WN ;
Green, AR .
LANCET, 2005, 365 (9464) :1054-1061
[6]   MPL mutations in myeloproliferative disorders:: analysis of the PT-1 cohort [J].
Beer, Philip A. ;
Campbell, Peter J. ;
Scott, Linda M. ;
Bench, Anthony J. ;
Erber, Wendy N. ;
Bareford, David ;
Wilkins, Bridget S. ;
Reilly, John T. ;
Hasselbalch, Hans C. ;
Bowman, Richard ;
Wheatley, Keith ;
Buck, Georgina ;
Harrison, Claire N. ;
Green, Anthony R. .
BLOOD, 2008, 112 (01) :141-149
[7]   MYB controls erythroid versus megakaryocyte lineage fate decision through the miR-486-3p-mediated downregulation of MAF [J].
Bianchi, E. ;
Bulgarelli, J. ;
Ruberti, S. ;
Rontauroli, S. ;
Sacchi, G. ;
Norfo, R. ;
Pennucci, V. ;
Zini, R. ;
Salati, S. ;
Prudente, Z. ;
Ferrari, S. ;
Manfredini, R. .
CELL DEATH AND DIFFERENTIATION, 2015, 22 (12) :1906-1921
[8]   c-myb supports erythropoiesis through the transactivation of KLF1 and LMO2 expression [J].
Bianchi, Elisa ;
Zini, Roberta ;
Salati, Simona ;
Tenedini, Elena ;
Norfo, Ruggiero ;
Tagliafico, Enrico ;
Manfredini, Rossella ;
Ferrari, Sergio .
BLOOD, 2010, 116 (22) :E99-E110
[9]   Dysmegakaryopoiesis of FPD/AML pedigrees with constitutional RUNX1 mutations is linked to myosin II deregulated expression [J].
Bluteau, Dominique ;
Glembotsky, Ana C. ;
Raimbault, Anna ;
Balayn, Nathalie ;
Gilles, Laure ;
Rameau, Philippe ;
Nurden, Paquita ;
Alessi, Marie Christine ;
Debili, Najet ;
Vainchenker, William ;
Heller, Paula G. ;
Favier, Remi ;
Raslova, Hana .
BLOOD, 2012, 120 (13) :2708-2718
[10]   Low rate of calreticulin mutations in refractory anaemia with ring sideroblasts and marked thrombocytosis [J].
Broseus, J. ;
Lippert, E. ;
Harutyunyan, A. S. ;
Jeromin, S. ;
Zipperer, E. ;
Florensa, L. ;
Milosevic, J. D. ;
Haferlach, T. ;
Germing, U. ;
Luno, E. ;
Schnittger, S. ;
Kralovics, R. ;
Girodon, F. .
LEUKEMIA, 2014, 28 (06) :1374-1376