Ordered Directionally Monotone Functions: Justification and Application

被引:44
|
作者
Bustince, Humberto [1 ,2 ]
Barrenechea, Edurne [1 ,2 ]
Sesma-Sara, Mikel [1 ,2 ]
Lafuente, Julio [3 ]
Pereira Dimuro, Gracaliz [2 ]
Mesiar, Radko [4 ,5 ]
Kolesarova, Anna [6 ]
机构
[1] Univ Publ Navarra, Pamplona 31006, Spain
[2] Inst Smart Cities, Pamplona 31006, Spain
[3] Univ Publ Navarra, Pamplona 31006, Spain
[4] Slovak Univ Technol Bratislava, Fac Civil Engn, Dept Math & Descript Geometry, Bratislava 81107, Slovakia
[5] Univ Ostrava, Inst Res & Applicat Fuzzy Modelling, CZ-70103 Ostrava, Czech Republic
[6] Slovak Univ Technol Bratislava, Inst Informat Engn Automat & Math, Bratislava 81237, Slovakia
关键词
Aggregation function; edge detection; function-based monotonicity; ordered directionally monotone function; weak monotonicity; SUBSETHOOD MEASURES; OVERLAP INDEXES; FUZZY; CONSTRUCTION; OPERATORS;
D O I
10.1109/TFUZZ.2017.2769486
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we introduce the notion of ordered directionally monotone function as a type of function which allows monotonicity along different directions in different points. In particular, these functions take into account the ordinal size of the coordinates of the inputs in order to fuse them. We show several examples of these functions and we study their properties. Finally, we present an illustrative example of an application which justifies the introduction and the study of the concept of ordered directional monotonicity.
引用
收藏
页码:2237 / 2250
页数:14
相关论文
共 50 条
  • [21] Image Feature Extraction Using OD-Monotone Functions
    Marco-Detchart, Cedric
    Lopez-Molina, Carlos
    Fernandez, Javier
    Pagola, Miguel
    Bustince, Humberto
    INFORMATION PROCESSING AND MANAGEMENT OF UNCERTAINTY IN KNOWLEDGE-BASED SYSTEMS: THEORY AND FOUNDATIONS, IPMU 2018, PT I, 2018, 853 : 266 - 277
  • [22] An Extension of Rasa's Conjecture to q-Monotone Functions
    Abel, Ulrich
    Leviatan, Dany
    RESULTS IN MATHEMATICS, 2020, 75 (04)
  • [23] Two-sided hardy-type inequalities for monotone functions
    Stepanov, V. D.
    Persson, L. E.
    Popova, O. V.
    DOKLADY MATHEMATICS, 2009, 80 (03) : 814 - 817
  • [24] Two-sided Hardy-type inequalities for monotone functions
    Persson, Lars-Erik
    Popova, Olga V.
    Stepanov, Vladimir D.
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2010, 55 (8-10) : 973 - 989
  • [25] Hardy-type integral inequalities for quasi-monotone functions
    Jain, Pankaj
    Singh, Monika
    Singh, Arun Pal
    GEORGIAN MATHEMATICAL JOURNAL, 2017, 24 (04) : 523 - 533
  • [26] On Optimal Banach Spaces Containing a Weight Cone of Monotone or Quasiconcave Functions
    Stepanov, V. D.
    MATHEMATICAL NOTES, 2015, 98 (5-6) : 957 - 970
  • [27] Generalized coupled fixed point theorems for mixed monotone mappings in partially ordered metric spaces
    Berinde, Vasile
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (18) : 7347 - 7355
  • [28] Random Periodic Point and Fixed Point Results for Random Monotone Mappings in Ordered Polish Spaces
    Zhu, Xing-Hua
    Xiao, Jian-Zhong
    FIXED POINT THEORY AND APPLICATIONS, 2010,
  • [29] Two power-weight inequalities for the Hilbert transform on the cones of monotone functions
    Stepanov, Vladimir D.
    Tikhonov, Sergey Yu.
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2011, 56 (10-11) : 1039 - 1047
  • [30] Stability Analysis of Monotone Systems via Max-Separable Lyapunov Functions
    Feyzmahdavian, Hamid Reza
    Besselink, Bart
    Johansson, Mikael
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2018, 63 (03) : 643 - 656