Ordered Directionally Monotone Functions: Justification and Application

被引:44
|
作者
Bustince, Humberto [1 ,2 ]
Barrenechea, Edurne [1 ,2 ]
Sesma-Sara, Mikel [1 ,2 ]
Lafuente, Julio [3 ]
Pereira Dimuro, Gracaliz [2 ]
Mesiar, Radko [4 ,5 ]
Kolesarova, Anna [6 ]
机构
[1] Univ Publ Navarra, Pamplona 31006, Spain
[2] Inst Smart Cities, Pamplona 31006, Spain
[3] Univ Publ Navarra, Pamplona 31006, Spain
[4] Slovak Univ Technol Bratislava, Fac Civil Engn, Dept Math & Descript Geometry, Bratislava 81107, Slovakia
[5] Univ Ostrava, Inst Res & Applicat Fuzzy Modelling, CZ-70103 Ostrava, Czech Republic
[6] Slovak Univ Technol Bratislava, Inst Informat Engn Automat & Math, Bratislava 81237, Slovakia
关键词
Aggregation function; edge detection; function-based monotonicity; ordered directionally monotone function; weak monotonicity; SUBSETHOOD MEASURES; OVERLAP INDEXES; FUZZY; CONSTRUCTION; OPERATORS;
D O I
10.1109/TFUZZ.2017.2769486
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we introduce the notion of ordered directionally monotone function as a type of function which allows monotonicity along different directions in different points. In particular, these functions take into account the ordinal size of the coordinates of the inputs in order to fuse them. We show several examples of these functions and we study their properties. Finally, we present an illustrative example of an application which justifies the introduction and the study of the concept of ordered directional monotonicity.
引用
收藏
页码:2237 / 2250
页数:14
相关论文
共 50 条
  • [1] Edge Detection Based on Ordered Directionally Monotone Functions
    Sesma-Sara, Mikel
    Bustince, Humberto
    Barrenechea, Edurne
    Lafuente, Julio
    Kolsesarova, Anna
    Mesiar, Radko
    ADVANCES IN FUZZY LOGIC AND TECHNOLOGY 2017, VOL 3, 2018, 643 : 301 - 307
  • [2] Consensus Image Feature Extraction with Ordered Directionally Monotone Functions
    Marco-Detchart, Cedric
    Dimuro, Gracaliz Pereira
    Sesma-Sara, Mikel
    Castillo-Lopez, Aitor
    Fernandez, Javier
    Bustince, Humberto
    FUZZY INFORMATION PROCESSING, NAFIPS 2018, 2018, 831 : 155 - 166
  • [3] Strengthened ordered directionally monotone functions. Links between the different notions of monotonicity
    Sesma-Sara, Mikel
    Lafuente, Julio
    Roldan, Antonio
    Mesiar, Radko
    Bustince, Humberto
    FUZZY SETS AND SYSTEMS, 2019, 357 : 151 - 172
  • [4] The state-of-art of the generalizations of the Choquet integral: From aggregation and pre-aggregation to ordered directionally monotone functions
    Dimuro, Gracaliz Pereira
    Fernandez, Javier
    Bedregal, Benjamin
    Mesiar, Radko
    Antonio Sanz, Jose
    Lucca, Giancarlo
    Bustince, Humberto
    INFORMATION FUSION, 2020, 57 (57) : 27 - 43
  • [5] Pointwise directional increasingness and geometric interpretation of directionally monotone functions
    Sesma-Sara, Mikel
    De Miguel, Laura
    Roldan Lopez de Hierro, Antonio Francisco
    Lafuente, Julio
    Mesiar, Radko
    Bustince, Humberto
    INFORMATION SCIENCES, 2019, 501 : 236 - 247
  • [6] A proposal of the notions of ordered and strengthened ordered directional monotonicity for interval-valued functions based on admissible orders
    Sesma-Sara, Mikel
    Mesiar, Radko
    Fernandez, Javier
    Takac, Zdenko
    Bustince, Humberto
    2020 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2020,
  • [7] Description and Properties of Curve-Based Monotone Functions
    Sesma-Sara, Mikel
    De Miguel, Laura
    Lopez de Hierro, Antonio Francisco Roldan
    Spirkova, Jana
    Mesiar, Radko
    Bustince, Humberto
    NEW TRENDS IN AGGREGATION THEORY, 2019, 981 : 195 - 204
  • [8] Trace inequalities for completely monotone functions and Bernstein functions
    Audenaert, Koenraad M. R.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 437 (02) : 601 - 611
  • [9] Implications Generated by Triples of Monotone Functions
    Hlinena, Dana
    Kalina, Martin
    Kral, Pavol
    AGGREGATION FUNCTIONS IN THEORY AND IN PRACTISE, 2013, 228 : 441 - 452
  • [10] Maximal Monotone Inclusions and Fitzpatrick Functions
    Borwein, J. M.
    Dutta, J.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2016, 171 (03) : 757 - 784