Multiple zeta functions: the double sine function anal the signed double Poisson summation formula

被引:10
作者
Koyama, S [1 ]
Kurokawa, N
机构
[1] Keio Univ, Dept Math, Yokohama, Kanagawa 2238522, Japan
[2] Tokyo Inst Technol, Dept Math, Tokyo 1528551, Japan
关键词
zeta function; multiple zeta function; multiple sine function;
D O I
10.1112/S0010437X04000521
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct multiple zeta functions as absolute tensor products of usual zeta functions. The Euler product expression is established for the most basic case zeta(s, F-p) x zeta(s, F-q) by using the signed double Poisson summation formula and the theory of the double sine function.
引用
收藏
页码:1176 / 1190
页数:15
相关论文
共 22 条
[1]  
Barnes E., 1904, T CAMBRIDGE PHILOS S, V19, P374
[2]  
Connes A, 1985, Inst. Hautes Etudes Sci. Publ. Math., V62, P41, DOI 10.1007/BF02698807
[3]   Studies on the null point of Riemann's zeta function [J].
Cramer, H .
MATHEMATISCHE ZEITSCHRIFT, 1919, 4 :104-130
[4]  
Deligne P., 1974, Publ. Math. IHES, DOI [10.1007/BF02684373. MR0340258 (49 #5013, DOI 10.1007/BF02684373.MR0340258(49#5013]
[5]   LOCAL L-FACTORS OF MOTIVES AND REGULARIZED DETERMINANTS [J].
DENINGER, C .
INVENTIONES MATHEMATICAE, 1992, 107 (01) :135-150
[6]  
Deninger C., 1998, Documenta Mathematica, volume Extra Volume ICM I, P163
[7]   Hasse zeta functions of non-commutative rings [J].
Fukaya, T .
JOURNAL OF ALGEBRA, 1998, 208 (01) :304-342
[8]   Cramer functions and Guinand equations [J].
Illies, G .
ACTA ARITHMETICA, 2002, 105 (02) :103-118
[9]   Regularized products and determinants [J].
Illies, G .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 220 (01) :69-94
[10]  
Koyama S., 2003, J RAMANUJAN MATH SOC, V18, P87