CENTRAL FUNCTIONS FOR CLASSES OF CONCAVE UNIVALENT FUNCTIONS

被引:0
作者
Bhowmik, Bappaditya [1 ]
Wirths, Karl-Joachim [2 ]
机构
[1] Natl Inst Technol Rourkela, Dept Math, Rourkela 769008, India
[2] Tech Univ Carolo Wilhelmina Braunschweig, Inst Anal & Algebra, D-38106 Braunschweig, Germany
关键词
central function; concave univalent function; neighborhoods of analytic functions; NEIGHBORHOODS;
D O I
10.1515/ms-2015-0124
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we answer a question of Bednarz and Sokol concerning concave univalent functions. We prove that there exist central functions for the classes Co(p) of concave univalent functions with pole at the point z = p is an element of (0, 1). Further, we construct a generalized neighborhood of this central function such that the whole class Co(p) is contained in such neighborhood. We also consider similar questions for the class of functions that are analytic and univalent in the unit disc and for some of its important subclasses. (C) 2016 Mathematical Institute Slovak Academy of Sciences
引用
收藏
页码:141 / 146
页数:6
相关论文
共 9 条
[1]  
Avkhadiev FG, 2006, COMMENT MATH HELV, V81, P801
[2]   A proof of the Livingston conjecture [J].
Avkhadiev, Farit G. ;
Wirths, Karl-Joachim .
FORUM MATHEMATICUM, 2007, 19 (01) :149-157
[3]  
Bednarz U., 2010, J MATH APPL, V32, P25
[4]  
Bednarz U, 2010, STUD U BABES-BOL MAT, V55, P41
[5]   On concave univalent functions [J].
Bhowmik, Bappaditya .
MATHEMATISCHE NACHRICHTEN, 2012, 285 (5-6) :606-612
[6]   NEIGHBORHOODS OF UNIVALENT-FUNCTIONS [J].
RUSCHEWEYH, S .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1981, 81 (04) :521-527
[7]  
SHEILSMALL T, 1989, J ANAL MATH, V52, P210
[8]   On neighborhoods of analytic functions with positive real part [J].
Sokol, Janusz .
MATHEMATISCHE NACHRICHTEN, 2011, 284 (11-12) :1547-1553
[9]  
WIRTHS K.-J., 2004, ANN POL MATH, V83, P87