Mitochondrial Chaperones and Proteases in Cardiomyocytes and Heart Failure

被引:9
|
作者
Chen, Zee [1 ,2 ]
Huang, Lei [1 ]
Tso, Alexandria [3 ]
Wang, Shijia [2 ]
Fang, Xi [3 ]
Ouyang, Kunfu [1 ,2 ]
Han, Zhen [2 ]
机构
[1] Peking Univ, Dept Cardiovasc Surg, Shenzhen Hosp, Shenzhen, Peoples R China
[2] Peking Univ, Sch Chem Biol & Biotechnol, State Key Lab Chem Oncogen, Shenzhen Grad Sch, Shenzhen, Peoples R China
[3] Univ Calif San Diego, Sch Med, Dept Med, La Jolla, CA 92093 USA
关键词
mitochondrial chaperone; mitochondrial protease; heart failure; cardiomyocyte; mitochondrial protein homeostasis; mitochondrial protein folding; mitochondrial protein degradation;
D O I
10.3389/fmolb.2021.630332
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Heart failure is one of the leading causes of morbidity and mortality worldwide. In cardiomyocytes, mitochondria are not only essential organelles providing more than 90% of the ATP necessary for contraction, but they also play critical roles in regulating intracellular Ca2+ signaling, lipid metabolism, production of reactive oxygen species (ROS), and apoptosis. Because mitochondrial DNA only encodes 13 proteins, most mitochondrial proteins are nuclear DNA-encoded, synthesized, and transported from the cytoplasm, refolded in the matrix to function alone or as a part of a complex, and degraded if damaged or incorrectly folded. Mitochondria possess a set of endogenous chaperones and proteases to maintain mitochondrial protein homeostasis. Perturbation of mitochondrial protein homeostasis usually precedes disruption of the whole mitochondrial quality control system and is recognized as one of the hallmarks of cardiomyocyte dysfunction and death. In this review, we focus on mitochondrial chaperones and proteases and summarize recent advances in understanding how these proteins are involved in the initiation and progression of heart failure.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Cyclosporine A attenuates mitochondrial permeability transition and improves mitochondrial respiratory function in cardiomyocytes isolated from dogs with heart failure
    Sharov, Victor G.
    Todor, Anastassia
    Khanal, Sanjaya
    Imai, Makoto
    Sabbah, Hani N.
    JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY, 2007, 42 (01) : 150 - 158
  • [2] Autophagic degeneration and death of cardiomyocytes in heart failure
    Takemura, Genzou
    Miyata, Shusaku
    Kawase, Yukinori
    Okada, Hideshi
    Maruyama, Rumi
    Fujiwara, Hisayoshi
    AUTOPHAGY, 2006, 2 (03) : 212 - 214
  • [3] Mitochondrial dysfunction and mitochondrial therapies in heart failure
    Wu, Chennan
    Zhang, Zhen
    Zhang, Weidong
    Liu, Xia
    PHARMACOLOGICAL RESEARCH, 2022, 175
  • [4] Mitochondrial dysfunction in heart failure
    Rosca, Mariana G.
    Hoppel, Charles L.
    HEART FAILURE REVIEWS, 2013, 18 (05) : 607 - 622
  • [5] Mitochondrial function in heart failure
    Schulze K.
    Dörner A.
    Schultheiß H.-P.
    Heart Failure Reviews, 1999, 4 (3) : 229 - 244
  • [6] Mitochondrial centrality in heart failure
    Marin-Garcia, Jose
    Goldenthal, Michael J.
    HEART FAILURE REVIEWS, 2008, 13 (02) : 137 - 150
  • [7] Mitochondrial centrality in heart failure
    José Marín-García
    Michael J. Goldenthal
    Heart Failure Reviews, 2008, 13 : 137 - 150
  • [8] Mitochondrial dysfunction in heart failure
    Mariana G. Rosca
    Charles L. Hoppel
    Heart Failure Reviews, 2013, 18 : 607 - 622
  • [9] Influence of heart failure on nucleocytoplasmic transport in human cardiomyocytes
    Cortes, Raquel
    Rosello-Lleti, Esther
    Rivera, Miguel
    Martinez-Dolz, Luis
    Salvador, Antonio
    Azorin, Inmaculada
    Portoles, Manuel
    CARDIOVASCULAR RESEARCH, 2010, 85 (03) : 464 - 472
  • [10] The role of heat shock proteins and co-chaperones in heart failure
    Ranek, Mark J.
    Stachowski, Marisa J.
    Kirk, Jonathan A.
    Willis, Monte S.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2018, 372 (1738)