Phase transitions, mechanical properties and electronic structures of novel boron phases under high-pressure: A first-principles study

被引:11
|
作者
Fan, Changzeng [1 ]
Li, Jian [1 ]
Wang, Limin [1 ]
机构
[1] Yanshan Univ, State Key Lab Metastable Mat Sci & Technol, Qinhuangdao 066004, Peoples R China
来源
SCIENTIFIC REPORTS | 2014年 / 4卷
关键词
TOTAL-ENERGY CALCULATIONS; CRYSTAL-STRUCTURE; PLANE-WAVE; PREDICTION; HARDNESS; METAL; ICOSAHEDRON; BERYLLIUM; PHYSICS; SOLIDS;
D O I
10.1038/srep06786
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We have explored the mechanical properties, electronic structures and phase transition behaviors of three designed new phases for element boron from ambient condition to high-pressure of 120 GPa including (1) a C2/c symmetric structure (m-B-16); (2) a Ia (3) over bar symmetric structure (c-B-56) and (3) a Pmna symmetric structure (o-B-24). The calculation of the elastic constants and phonon dispersions shows that the phases are of mechanical and dynamic stability. Them-B-16 phase is found to transform into another new phase (the o-B-16 phase) when pressure exceeds 68 GPa. This might offer a new synthesis strategy for o-B-16 from the metastable m-B-16 at low temperature under high pressure, bypassing the thermodynamically stable gamma-B-28. The enthalpies of the c-B56 and o-B-24 phases are observed to increase with pressure. The hardness of m-B-16 and o-B-16 is calculated to be about 56 GPa and 61 GPa, approaching to the highest value of 61 GPa recorded for alpha-Ga-B among all available Boron phases. The electronic structures and bonding characters are analyzed according to the difference charge-density and crystal orbital Hamilton population (COHP), revealing the metallic nature of the three phases.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Novel high-pressure phases of AlN: A first-principles study
    Liu, Chao
    Hu, Meng
    Luo, Kun
    Cui, Lin
    Yu, Dongli
    Zhao, Zhisheng
    He, Julong
    COMPUTATIONAL MATERIALS SCIENCE, 2016, 117 : 496 - 501
  • [2] Novel structural phases and the properties of LaX (X = P, As) under high pressure: first-principles study
    Zhou, Yu
    Shi, Lan-Ting
    Liang, A-Kun
    Zeng, Zhao-Yi
    Chen, Xiang-Rong
    Geng, Hua-Yun
    RSC ADVANCES, 2021, 11 (05) : 3058 - 3070
  • [3] Mechanical and thermodynamic properties of ZrO2 under high-pressure phase transition: A first-principles study
    Wang, Wei
    Liang, Zuozhong
    Han, Xianglong
    Chen, Jianfeng
    Xue, Chunyu
    Zhao, Hong
    JOURNAL OF ALLOYS AND COMPOUNDS, 2015, 622 : 504 - 512
  • [4] First-principles study of pressure-induced phase transitions, mechanical and thermodynamic properties of ThBC
    Sun, Jiacheng
    Liao, Zhiguang
    Zhang, Yue
    Guo, Yongliang
    Ke, Xuezhi
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2022, 34 (04)
  • [5] First-principles study of the structure, mechanical properties, and phase stability of crystalline zirconia under high pressure
    Zhu, Weihua
    Wang, Rongshan
    Shu, Guogang
    Wu, Ping
    Xiao, Heming
    STRUCTURAL CHEMISTRY, 2012, 23 (03) : 601 - 611
  • [6] First-principles study on structural, mechanical and electronic properties of thorium dichalcogenides under high pressure
    Guo, Yongliang
    Chen, Juncai
    Wang, Changying
    Jiao, Zhaoyong
    Ke, Xuezhi
    Huai, Ping
    JOURNAL OF NUCLEAR MATERIALS, 2018, 508 : 147 - 153
  • [7] First-principles study on the phase transitions, crystal stabilities and thermodynamic properties of TiN under high pressure
    Sun, Xinjun
    Liu, Changdong
    Guo, Yongliang
    Sun, Deyan
    Ke, Xuezhi
    PHYSICS LETTERS A, 2018, 382 (09) : 656 - 661
  • [8] First-principles study of the structure, mechanical properties, and phase stability of crystalline zirconia under high pressure
    Weihua Zhu
    Rongshan Wang
    Guogang Shu
    Ping Wu
    Heming Xiao
    Structural Chemistry, 2012, 23 : 601 - 611
  • [9] BORON UNDER PRESSURE: PHASE DIAGRAM AND NOVEL HIGH-PRESSURE PHASE
    Oganov, Artem R.
    BORON RICH SOLIDS: SENSORS, ULTRA HIGH TEMPERATURE CERAMICS, THERMOELECTRICS, ARMOR, 2010, : 207 - 225
  • [10] First-Principles Study of the Elastic, Hardness and Electronic Properties of MoAlB under High Pressure
    Xiao Ling Zhu
    Wei Yang
    Shan Shan Gao
    Jin Ping Zhang
    Journal of the Korean Physical Society, 2019, 74 : 473 - 480