Phase transitions, mechanical properties and electronic structures of novel boron phases under high-pressure: A first-principles study

被引:11
作者
Fan, Changzeng [1 ]
Li, Jian [1 ]
Wang, Limin [1 ]
机构
[1] Yanshan Univ, State Key Lab Metastable Mat Sci & Technol, Qinhuangdao 066004, Peoples R China
关键词
TOTAL-ENERGY CALCULATIONS; CRYSTAL-STRUCTURE; PLANE-WAVE; PREDICTION; HARDNESS; METAL; ICOSAHEDRON; BERYLLIUM; PHYSICS; SOLIDS;
D O I
10.1038/srep06786
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We have explored the mechanical properties, electronic structures and phase transition behaviors of three designed new phases for element boron from ambient condition to high-pressure of 120 GPa including (1) a C2/c symmetric structure (m-B-16); (2) a Ia (3) over bar symmetric structure (c-B-56) and (3) a Pmna symmetric structure (o-B-24). The calculation of the elastic constants and phonon dispersions shows that the phases are of mechanical and dynamic stability. Them-B-16 phase is found to transform into another new phase (the o-B-16 phase) when pressure exceeds 68 GPa. This might offer a new synthesis strategy for o-B-16 from the metastable m-B-16 at low temperature under high pressure, bypassing the thermodynamically stable gamma-B-28. The enthalpies of the c-B56 and o-B-24 phases are observed to increase with pressure. The hardness of m-B-16 and o-B-16 is calculated to be about 56 GPa and 61 GPa, approaching to the highest value of 61 GPa recorded for alpha-Ga-B among all available Boron phases. The electronic structures and bonding characters are analyzed according to the difference charge-density and crystal orbital Hamilton population (COHP), revealing the metallic nature of the three phases.
引用
收藏
页数:11
相关论文
共 74 条
[1]   Boron: Elementary Challenge for Experimenters and Theoreticians [J].
Albert, Barbara ;
Hillebrecht, Harald .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2009, 48 (46) :8640-8668
[2]  
Amberger E., 1971, J LESS-COMMON MET, V23, P31
[3]   First-principles study of hypothetical boron crystals: Bn(n=13, 14, 15) [J].
Aydin, Sezgin ;
Simsek, Mehmet .
SOLID STATE SCIENCES, 2012, 14 (11-12) :1636-1642
[4]   First-principles calculations of elemental crystalline boron phases under high pressure: Orthorhombic B28 and tetragonal B48 [J].
Aydin, Sezgin ;
Simsek, Mehmet .
JOURNAL OF ALLOYS AND COMPOUNDS, 2011, 509 (17) :5219-5229
[5]   The effect of pressure upon the elastic parameters of isotropic solids, according to Murnaghan's theory of finite strain [J].
Birch, F .
JOURNAL OF APPLIED PHYSICS, 1938, 9 (04) :279-288
[6]   IMPROVED TETRAHEDRON METHOD FOR BRILLOUIN-ZONE INTEGRATIONS [J].
BLOCHL, PE ;
JEPSEN, O ;
ANDERSEN, OK .
PHYSICAL REVIEW B, 1994, 49 (23) :16223-16233
[7]  
Buschveck K. C., 1981, GMELIN HDB INROGANIC, P112
[8]   Modeling hardness of polycrystalline materials and bulk metallic glasses [J].
Chen, Xing-Qiu ;
Niu, Haiyang ;
Li, Dianzhong ;
Li, Yiyi .
INTERMETALLICS, 2011, 19 (09) :1275-1281
[9]   THE CRYSTAL STRUCTURE OF A SIMPLE RHOMBOHEDRAL FORM BORON [J].
DECKER, BF ;
KASPER, JS .
ACTA CRYSTALLOGRAPHICA, 1959, 12 (07) :503-506
[10]   Crystal Orbital Hamilton Population (COHP) Analysis As Projected from Plane-Wave Basis Sets [J].
Deringer, Volker L. ;
Tchougreeff, Andrei L. ;
Dronskowski, Richard .
JOURNAL OF PHYSICAL CHEMISTRY A, 2011, 115 (21) :5461-5466