Topological phases on the hyperbolic plane: fractional bulk-boundary correspondence

被引:0
作者
Mathai, Varghese [1 ]
Guo Chuan Thiang [1 ]
机构
[1] Univ Adelaide, Dept Pure Math, Sch Math Sci, Adelaide, SA 5005, Australia
基金
澳大利亚研究理事会;
关键词
TWISTED INDEX THEORY; T-DUALITY; GOOD ORBIFOLDS; TORUS BUNDLES; H-FLUXES; ALGEBRAS; CONJECTURE; INSULATOR;
D O I
暂无
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We study topological phases in the hyperbolic plane using non-commutative geometry and T-duality, and show that fractional versions of the quantised indices for integer, spin and anomalous quantum Hall effects can result. Generalising models used in the Euclidean setting, a model for the bulk-boundary correspondence of fractional indices is proposed, guided by the geometry of hyperbolic boundaries.
引用
收藏
页码:803 / 840
页数:38
相关论文
共 62 条
  • [1] Adem A., 2007, Orbifolds and Stringy Topology, V171
  • [2] [Anonymous], 1982, GRADUATE TEXTS MATH
  • [3] [Anonymous], 2006, Aspects of Mathematics
  • [4] On the Baum-Connes conjecture in the real case
    Baum, P
    Karoubi, M
    [J]. QUARTERLY JOURNAL OF MATHEMATICS, 2004, 55 : 231 - 235
  • [5] Baum P., 1988, A FETE OF TOPOLOGY, P163, DOI [DOI 10.1016/B978-0-12-480440-1.50015-0, 10. 1016/B978-0-12-480440-1. 50015-0]
  • [6] Baum P., 1994, CONT MATH, V167, P241, DOI DOI 10.1090/CONM/167/1292018
  • [7] Beardon A. F., 2012, GEOMETRY DISCRETE GR, V91
  • [8] THE NONCOMMUTATIVE GEOMETRY OF THE QUANTUM HALL-EFFECT
    BELLISSARD, J
    VANELST, A
    SCHULZBALDES, H
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (10) : 5373 - 5451
  • [9] Benameur M.-T., IN PRESS
  • [10] Gap-labelling conjecture with nonzero magnetic field
    Benameur, Moulay Tahar
    Mathai, Varghese
    [J]. ADVANCES IN MATHEMATICS, 2018, 325 : 116 - 164