Topological phases on the hyperbolic plane: fractional bulk-boundary correspondence

被引:0
作者
Mathai, Varghese [1 ]
Guo Chuan Thiang [1 ]
机构
[1] Univ Adelaide, Dept Pure Math, Sch Math Sci, Adelaide, SA 5005, Australia
基金
澳大利亚研究理事会;
关键词
TWISTED INDEX THEORY; T-DUALITY; GOOD ORBIFOLDS; TORUS BUNDLES; H-FLUXES; ALGEBRAS; CONJECTURE; INSULATOR;
D O I
暂无
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We study topological phases in the hyperbolic plane using non-commutative geometry and T-duality, and show that fractional versions of the quantised indices for integer, spin and anomalous quantum Hall effects can result. Generalising models used in the Euclidean setting, a model for the bulk-boundary correspondence of fractional indices is proposed, guided by the geometry of hyperbolic boundaries.
引用
收藏
页码:803 / 840
页数:38
相关论文
共 62 条
[1]  
Adem A., 2007, Orbifolds and Stringy Topology, V171
[2]  
[Anonymous], 1982, GRADUATE TEXTS MATH
[3]  
[Anonymous], 2006, Aspects of Mathematics
[4]   On the Baum-Connes conjecture in the real case [J].
Baum, P ;
Karoubi, M .
QUARTERLY JOURNAL OF MATHEMATICS, 2004, 55 :231-235
[5]  
Baum P., 1988, A FETE OF TOPOLOGY, P163, DOI [DOI 10.1016/B978-0-12-480440-1.50015-0, 10. 1016/B978-0-12-480440-1. 50015-0]
[6]  
Baum P., 1994, CONT MATH, V167, P241, DOI DOI 10.1090/CONM/167/1292018
[7]  
Beardon A. F., 2012, GEOMETRY DISCRETE GR, V91
[8]   THE NONCOMMUTATIVE GEOMETRY OF THE QUANTUM HALL-EFFECT [J].
BELLISSARD, J ;
VANELST, A ;
SCHULZBALDES, H .
JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (10) :5373-5451
[9]  
Benameur M.-T., IN PRESS
[10]   Gap-labelling conjecture with nonzero magnetic field [J].
Benameur, Moulay Tahar ;
Mathai, Varghese .
ADVANCES IN MATHEMATICS, 2018, 325 :116-164