The essential player in adipogenesis GRP78 is a novel KCTD15 interactor

被引:16
作者
Smaldone, Giovanni [1 ]
Pirone, Luciano [2 ]
Capolupo, Angela [3 ,4 ]
Vitagliano, Luigi [2 ]
Monti, Maria Chiara [3 ]
Di Gaetano, Sonia [2 ]
Pedone, Emilia [2 ]
机构
[1] IRCCS SDN, Naples, Italy
[2] CNR, Inst Biostruct & Bioimaging, I-80134 Naples, Italy
[3] Univ Salerno, Dept Pharm, I-84084 Salerno, Italy
[4] Univ Salerno, PhD Program Drug Discovery & Dev, I-84084 Fisciano, SA, Italy
关键词
Adipogenesis; KCTD family; Interactors; ADIPOCYTE DIFFERENTIATION; INSIGHTS; PROTEINS; RECOGNITION; NETWORKS; CULLIN3; DOMAINS; REVEAL; STATES;
D O I
10.1016/j.ijbiomac.2018.04.078
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
KCTD15 is a member of the K+ Channel Tetramerization Domain family, implicated in crucial physiopathological processes. Recent evidences suggest that KCTD15 is an obesity-linked protein in humans and its Drosophila homologue is involved in food uptake. KCTD15 molecular mechanism in these processes is still unknown. To fill this gap, KCTD15 was biophysically characterized showing a folded, pentameric region endowed with a remarkable thermal stability. Notably, the C-terminal domain significantly contributes to the stabilization of the BTB N-terminal domain. The availability of large amount of stable recombinant protein also made possible a functional proteomic approach in 3T3-L1 cells to search for novel KCTD15 interactors. These investigations led to the discovery that GRP78 is a KCTD15 partner in all the adipogenesis phases. Our data clearly prove the physical interaction of the two proteins and also indicate that GRP78 plays an active role in the stabilization of KCTD15. Furthermore, the presence in Drosophila of a GRP78 homologue corroborates the physiological role played by the complex KCTD15-GRP78 in the adipogenesis process and indicates that it is evolutionarily conserved. Present results also suggest that KCTD15 may be a new target for obesity control. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:469 / 475
页数:7
相关论文
共 29 条
[1]   Molecular recognition of Cullin3 by KCTDs: Insights from experimental and computational investigations [J].
Balasco, Nicole ;
Pirone, Luciano ;
Smaldone, Giovanni ;
Di Gaetano, Sonia ;
Esposito, Luciana ;
Pedone, Emilia Maria ;
Vitagliano, Luigi .
BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS, 2014, 1844 (07) :1289-1298
[2]   Genetic wiring maps of single-cell protein states reveal an off-switch for GPCR signalling [J].
Brockmann, Markus ;
Blomen, Vincent A. ;
Nieuwenhuis, Joppe ;
Stickel, Elmer ;
Raaben, Matthijs ;
Bleijerveld, Onno B. ;
Altelaar, A. F. Maarten ;
Jae, Lucas T. ;
Brummelkamp, Thijn R. .
NATURE, 2017, 546 (7657) :307-+
[3]   Histone deacetylase and Cullin3-RENKCTD11 ubiquitin ligase interplay regulates Hedgehog signalling through Gli acetylation [J].
Canettieri, Gianluca ;
Di Marcotullio, Lucia ;
Greco, Azzura ;
Coni, Sonia ;
Antonucci, Laura ;
Infante, Paola ;
Pietrosanti, Laura ;
De Smaele, Enrico ;
Ferretti, Elisabetta ;
Miele, Evelina ;
Pelloni, Marianna ;
De Simone, Giuseppina ;
Pedone, Emilia Maria ;
Gallinari, Paola ;
Giorgi, Alessandra ;
Steinkuehler, Christian ;
Vitagliano, Luigi ;
Pedone, Carlo ;
Schinina, M. Eugenia ;
Screpanti, Isabella ;
Gulino, Alberto .
NATURE CELL BIOLOGY, 2010, 12 (02) :132-U91
[4]   A biophysical characterization of the folded domains of KCTD12: insights into interaction with the GABAB2 receptor [J].
Correale, Stefania ;
Esposito, Carla ;
Pirone, Luciano ;
Vitagliano, Luigi ;
Di Gaetano, Sonia ;
Pedone, Emilia .
JOURNAL OF MOLECULAR RECOGNITION, 2013, 26 (10) :488-495
[5]   Cullin3-BTB Interface: A Novel Target for Stapled Peptides [J].
de Paola, Ivan ;
Pirone, Luciano ;
Palmieri, Maddalena ;
Balasco, Nicole ;
Esposito, Luciana ;
Russo, Luigi ;
Mazza, Daniela ;
Di Marcotullio, Lucia ;
Di Gaetano, Sonia ;
Malgieri, Gaetano ;
Vitagliano, Luigi ;
Pedone, Emilia ;
Zaccaro, Laura .
PLOS ONE, 2015, 10 (04)
[6]   Exploring the binding of d(GGGT)4 to the HIV-1 integrase: An approach to investigate G-quadruplex aptamer/target protein interactions [J].
Esposito, Veronica ;
Pirone, Luciano ;
Mayol, Luciano ;
Pedone, Emilia ;
Virgilio, Antonella ;
Galeone, Aldo .
BIOCHIMIE, 2016, 127 :19-22
[7]   Architecture of the human interactome defines protein communities and disease networks [J].
Huttlin, Edward L. ;
Bruckner, Raphael J. ;
Paulo, Joao A. . ;
Cannon, Joe R. ;
Ting, Lily ;
Baltier, Kurt ;
Colby, Greg ;
Gebreab, Fana ;
Gygi, Melanie P. ;
Parzen, Hannah ;
Szpyt, John ;
Tam, Stanley ;
Zarraga, Gabriela ;
Pontano-Vaites, Laura ;
Swarup, Sharan ;
White, Anne E. ;
Schweppe, Devin K. ;
Rad, Ramin ;
Erickson, Brian K. ;
Obar, Robert A. . ;
Guruharsha, K. G. ;
Li, Kejie ;
Rtavanis-Tsakonas, Spyros A. ;
Gygi, Steven P. ;
Harper, J. Wade .
NATURE, 2017, 545 (7655) :505-+
[8]   MicroScale Thermophoresis: Interaction analysis and beyond [J].
Jerabek-Willemsen, Moran ;
Andre, Timon ;
Wanner, Randy ;
Roth, Heide Marie ;
Duhr, Stefan ;
Baaske, Philipp ;
Breitsprecher, Dennis .
JOURNAL OF MOLECULAR STRUCTURE, 2014, 1077 :101-113
[9]   Structural Insights into KCTD Protein Assembly and Cullin3 Recognition [J].
Ji, Alan X. ;
Chu, Anh ;
Nielsen, Tine Kragh ;
Benlekbir, Samir ;
Rubinstein, John L. ;
Prive, Gilbert G. .
JOURNAL OF MOLECULAR BIOLOGY, 2016, 428 (01) :92-107
[10]   From pathways to networks: Connecting dots by establishing protein-protein interaction networks in signaling pathways using affinity purification and mass spectrometry [J].
Li, Xu ;
Wang, Wenqi ;
Chen, Junjie .
PROTEOMICS, 2015, 15 (2-3) :188-202