Putative identification of the usnic acid biosynthetic gene cluster by de novo whole-genome sequencing of a lichen -forming fungus

被引:51
作者
Abdel-Hameed, Mona [1 ]
Bertrand, Robert L. [1 ]
Piercey-Normore, Michele D. [2 ]
Sorensen, John L. [1 ]
机构
[1] Univ Manitoba, Dept Chem, Room 334 Parker Bldg,144 Dysart Rd, Winnipeg, MB R3T 2N2, Canada
[2] Univ Manitoba, Dept Biol Sci, Room 334 Parker Bldg,144 Dysart Rd, Winnipeg, MB R3T 2N2, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Biosynthesis; Cladonia uncialis; Lichen fungi; Phylogenetics; Polyketide synthase; Secondary metabolite; POLYKETIDE SYNTHASE GENE; SECONDARY METABOLISM; EVOLUTION; INSIGHTS;
D O I
10.1016/j.funbio.2015.10.009
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
To identify the biosynthetic gene cluster responsible for the biosynthesis of the polyketide usnic acid we carried out the de novo genome sequencing of the fungal partner of Cladonia uncialis. This was followed by comprehensive in silico annotation of polyketide synthase (PKS) genes. The biosynthesis of usnic acid requires a non-reducing PKS possessing a carbon methylation (CMeT) domain, a terminal Claisen cyclase (CLC) domain, and an accompanying oxidative enzyme that dimerizes methylphloracetophenone to usnic acid. Of the 32 candidate PKS genes identified in the mycobiont genome, only one was identified as consistent with these biosynthetic requirements. This gene cluster contains two genes encoding a non-reducing PKS and a cytochrome p450, which have been respectively named methylphloracetophenone synthase (MPAS) and methylphloracetophenone oxidase (MPAO). Both mpas and mpao were demonstrated to be transcriptionally active by reverse transcriptase-PCR of the mRNA in a lichen sample that was observed by HPLC to produce usnic acid. Phylogenetic analysis of the bioinformatically identified ketosynthase (KS) and CLC domains of MPAS demonstrated that mpas grouped within a unique Glade and that mpas could be used as a phylogenetic probe to identify other MPAS genes. (C) 2015 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:306 / 316
页数:11
相关论文
共 45 条
[1]  
Ahmadjian V., 1993, LICHEN SYMBIOSIS
[2]   BASIC LOCAL ALIGNMENT SEARCH TOOL [J].
ALTSCHUL, SF ;
GISH, W ;
MILLER, W ;
MYERS, EW ;
LIPMAN, DJ .
JOURNAL OF MOLECULAR BIOLOGY, 1990, 215 (03) :403-410
[3]   Heterologous production of fungal secondary metabolites in Aspergilli [J].
Anyaogu, Diana Chinyere ;
Mortensen, Uffe Hasbro .
FRONTIERS IN MICROBIOLOGY, 2015, 6
[4]   Review of the biological properties and toxicity of usnic acid [J].
Araujo, A. A. S. ;
de Melo, M. G. D. ;
Rabelo, T. K. ;
Nunes, P. S. ;
Santos, S. L. ;
Serafini, M. R. ;
Santos, M. R. V. ;
Quintans-Junior, L. J. ;
Gelain, D. P. .
NATURAL PRODUCT RESEARCH, 2015, 29 (23) :2167-2180
[5]   Insights from the first putative biosynthetic gene cluster for a lichen depside and depsidone [J].
Armaleo, Daniele ;
Sun, Xiameng ;
Culberson, Chicita .
MYCOLOGIA, 2011, 103 (04) :741-754
[6]   THE SYNTHESIS OF USNIC ACID [J].
BARTON, DHR ;
DEFLORIN, AM ;
EDWARDS, OE .
JOURNAL OF THE CHEMICAL SOCIETY, 1956, (MAR) :530-534
[7]   Evolution of ITS ribosomal RNA secondary structures in fungal and algal symbionts of selected species of Cladonia sect. Cladonia (Cladoniaceae, Ascomycotina) [J].
Beiggi, Sara ;
Piercey-Normore, Michele D. .
JOURNAL OF MOLECULAR EVOLUTION, 2007, 64 (05) :528-542
[8]   Cytochromes P450 as versatile biocatalysts [J].
Bernhardt, Rita .
JOURNAL OF BIOTECHNOLOGY, 2006, 124 (01) :128-145
[9]   antiSMASH 2.0-a versatile platform for genome mining of secondary metabolite producers [J].
Blin, Kai ;
Medema, Marnix H. ;
Kazempour, Daniyal ;
Fischbach, Michael A. ;
Breitling, Rainer ;
Takano, Eriko ;
Weber, Tilmann .
NUCLEIC ACIDS RESEARCH, 2013, 41 (W1) :W204-W212
[10]   Alterations in secondary metabolism of aposymbiotically grown mycobionts of Xanthoria elegans and cultured resynthesis stages [J].
Brunauer, Georg ;
Hager, Armin ;
Grube, Martin ;
Tuerk, Roman ;
Stocker-Woergoetter, Elfie .
PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2007, 45 (02) :146-151