Corrosion protection for aerospace aluminum alloys by Modified Self-assembled NAnophase Particle (MSNAP) sol-gel

被引:65
|
作者
Voevodin, N. N.
Kurdziel, J. W.
Mantz, R.
机构
[1] Univ Dayton, Res Inst, Dayton, OH 45469 USA
[2] USAF, Res Labs, Mat & Mfg Directorate,Coatings Res Grp, Nonmet Mat Div,Nonstruct Mat Branch, Wright Patterson AFB, OH 45433 USA
[3] Univ Dayton, Res Inst, Dayton, OH 45469 USA
[4] Univ Dayton, Dept Chem Engn, Dayton, OH 45469 USA
来源
SURFACE & COATINGS TECHNOLOGY | 2006年 / 201卷 / 3-4期
关键词
corrosion; sol-gel; electrochemical impedance spectroscopy (EIS); Salt Spray test; SURFACE TREATMENTS; COATINGS; AA2024-T3; 2024-T3;
D O I
10.1016/j.surfcoat.2006.01.028
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The Air Force Research Laboratory is developing environmentally benign alternatives to the traditional chromated aircraft coating for aircraft corrosion protection, targeted at a 30+ year performance life cycle. The Self-assembled NAnophase Particles (SNAP) process is a new method of forming functionalized silica nanoparticles in-situ from hydrolyzed tetramethoxysilane (TMOS) and glycidoxypropyltrimethoxysilane (GPTMS) in an aqueous sol-gel process, and then cross-linking the natioparticles to form a thin, fully dense, protective film on Al aerospace alloys. These nanostructured coatings have been shown to provide an excellent barrier to corrosion for aluminum aerospace alloys; and other applications are envisioned. Much work has been done on characterization and performance of these coatings. This paper discusses a modification of SNAP formulation with tetraethoxysilane (TEOS). Films were formulated and developed to produce a dense barrier sol-gel coating on AA2024-T3. Corrosion protection properties of the films were evaluated with potentiodynamic scan (PDS) electrochemical technique, electrochemical impedance spectroscopy (EIS) and Salt Spray test (5% NaCl). (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:1080 / 1084
页数:5
相关论文
共 50 条
  • [2] Preparation and corrosion protective properties of titania-containing modified self-assembled nanophase particle (TMSNAP) sol-gel on AA2024 aluminum alloy
    Parsa, M.
    Hosseini, S. M. A.
    Jamalizadeh, E.
    Saheb, V.
    MATERIALS AND CORROSION-WERKSTOFFE UND KORROSION, 2013, 64 (09): : 821 - 830
  • [3] Corrosion Protection of 6061 Aluminum Alloys by Sol-Gel Coating Modified with ZnLaAl-LDHs
    Wang, Youbin
    Huang, Qiuyu
    Zhou, Bingtao
    Yuan, Zengyin
    Wei, Yuezhou
    Fujita, Toyohisa
    COATINGS, 2021, 11 (04)
  • [4] Development and characterization of sol-gel composite coatings on aluminum alloys for corrosion protection
    Lampke, Th.
    Darwich, S.
    Nickel, D.
    Wielage, B.
    MATERIALWISSENSCHAFT UND WERKSTOFFTECHNIK, 2008, 39 (12) : 914 - 919
  • [5] Impact of hybrid self-assembled nanophase particle-based sol-gel coatings on the localized corrosion behavior of modified 9Cr-1Mo steel in chloride medium
    Ramya, S.
    Arunchandran, C.
    George, R. P.
    Thinaharan, C.
    Mudali, U. Kamachi
    JOURNAL OF COATINGS TECHNOLOGY AND RESEARCH, 2017, 14 (01): : 129 - 140
  • [6] Corrosion protection of aluminum pigments by sol-gel coatings
    Supplit, Ralf
    Schubert, Ulrich
    CORROSION SCIENCE, 2007, 49 (08) : 3325 - 3332
  • [7] Corrosion protection of aluminium alloys by sol-gel coatings
    Conde, A
    Durán, A
    de Damborenea, J
    BOLETIN DE LA SOCIEDAD ESPANOLA DE CERAMICA Y VIDRIO, 2002, 41 (03): : 319 - 323
  • [8] Sol-gel chemistry of self-assembled photonic crystals
    Phillips, Katherine
    England, Grant
    Vogel, Nicolas
    Aizenberg, Joanna
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 250
  • [9] Organic-inorganic hybrid sol-gel coatings for corrosion protection of aluminum alloys
    Zhang, Lei
    Zhang, Junqing
    Liu, Ruiping
    SURFACE INNOVATIONS, 2016, 4 (02) : 51 - 69
  • [10] Use of a sol-gel conversion coating for aluminum corrosion protection
    Yang, XF
    Tallman, DE
    Gelling, VJ
    Bierwagen, GP
    Kasten, LS
    Berg, J
    SURFACE & COATINGS TECHNOLOGY, 2001, 140 (01): : 44 - 50