The functional central limit theorem for the multivariate MS-ARMA-GARCH model

被引:1
作者
Lee, Oesook [1 ]
Lee, Jungwha [1 ]
机构
[1] Ewha Womans Univ, Dept Stat, Seoul 120750, South Korea
基金
新加坡国家研究基金会;
关键词
Functional central limit theorem; L-2-NED; Multivariate MS-GARCH; Multivariate MS-ARMA-GARCH; STATIONARITY;
D O I
10.1016/j.econlet.2014.10.002
中图分类号
F [经济];
学科分类号
02 ;
摘要
In this paper, we consider the multivariate ARMA-GARCH process governed by Markov switching coefficients. We show under proper assumptions that the process holds the L-2-NED property and obeys the multivariate functional central limit theorem. The multivariate Markov switching constant conditional correlation(CCC)-GARCH model is considered as a special case.(C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:331 / 335
页数:5
相关论文
共 50 条
[21]   On a random functional central limit theorem for a stationary multivariate linear process generated by linearly positive quadrant dependent random vectors [J].
Kim, TS ;
Ko, MH .
STOCHASTIC ANALYSIS AND APPLICATIONS, VOL 2, 2002, :97-104
[22]   A FUNCTIONAL CENTRAL LIMIT THEOREM FOR INTEGRALS OF STATIONARY MIXING RANDOM FIELDS [J].
Kampf, J. ;
Spodarev, E. .
THEORY OF PROBABILITY AND ITS APPLICATIONS, 2018, 63 (01) :135-150
[23]   Functional central limit theorem for double-indexed summation process [J].
Rackauskas A. ;
Zemlys V. .
Lithuanian Mathematical Journal, 2005, 45 (3) :324-333
[24]   A functional central limit theorem for the level measure of a Gaussian random field [J].
Shashkin, A. .
STATISTICS & PROBABILITY LETTERS, 2013, 83 (02) :637-643
[25]   A bootstrap functional central limit theorem for time-varying linear processes [J].
Beering, Carina ;
Leucht, Anne .
JOURNAL OF NONPARAMETRIC STATISTICS, 2024, 36 (01) :240-263
[26]   A functional central limit theorem for the empirical estimator of a semi-Markov kernel [J].
Limnios, N .
JOURNAL OF NONPARAMETRIC STATISTICS, 2004, 16 (1-2) :13-18
[27]   A functional central limit theorem for empirical processes under a strong mixing condition [J].
Tone C. .
Statistical Inference for Stochastic Processes, 2012, 15 (2) :177-192
[28]   A functional central limit theorem for the empirical Ripley's K-function [J].
Biscio, Christophe A. N. ;
Svane, Anne Marie .
ELECTRONIC JOURNAL OF STATISTICS, 2022, 16 (01) :3060-3098
[29]   A FUNCTIONAL CENTRAL-LIMIT-THEOREM FOR POSITIVELY DEPENDENT RANDOM-VARIABLES [J].
BIRKEL, T .
JOURNAL OF MULTIVARIATE ANALYSIS, 1993, 44 (02) :314-320
[30]   A functional central limit theorem for the K-function with an estimated intensity function [J].
Svane, A. M. ;
Biscio, C. A. N. ;
Waagepetersen, R. .
ELECTRONIC JOURNAL OF STATISTICS, 2024, 18 (02) :3706-3728