Proteomic analysis of mammalian sperm cells identifies new components of the centrosome

被引:84
作者
Firat-Karalar, Elif N. [1 ]
Sante, Joshua [1 ]
Elliott, Sarah [1 ]
Stearns, Tim [1 ,2 ]
机构
[1] Stanford Univ, Dept Biol, Stanford, CA 94305 USA
[2] Stanford Sch Med, Dept Genet, Stanford, CA 94305 USA
基金
美国国家卫生研究院;
关键词
Centriole; Centrosome; Primary cilium; Sperm; MOLECULAR ARCHITECTURE; CENTRIOLE DUPLICATION; PROTEIN-COMPONENTS; HUMAN SPERMATOZOA; CILIA; FLAGELLA; DISEASE; GENES; LOCALIZATION; INTERACTS;
D O I
10.1242/jcs.157008
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Centrioles are evolutionarily conserved microtubule-based structures at the core of the animal centrosome that are essential for nucleating the axoneme of cilia. We hypothesized that centriole proteins have been under-represented in proteomic studies of the centrosome, because of the larger amount of pericentriolar material making up the centrosome. In this study, we have overcome this problem by determining the centriolar proteome of mammalian sperm cells, which have a pair of centrioles but little pericentriolar material. Mass spectrometry of sperm centrioles identifies known components of centrioles and many previously uncharacterized candidate centriole proteins. Assessment of localization of a subset of these candidates in cultured cells identified CCDC113, CCDC96, C4orf47, CCDC38, C7orf31, CCDC146, CCDC81 and CCDC116 as centrosome-associated proteins. We examined the highly conserved protein CCDC113 further and found that it is a component of centriolar satellites, is in a complex with the satellite proteins HAP1 and PCM1, and functions in primary cilium formation.
引用
收藏
页码:4128 / 4133
页数:6
相关论文
共 39 条
  • [1] Decoding cilia function: Defining specialized genes required for compartmentalized cilia biogenesis
    Avidor-Reiss, T
    Maer, AM
    Koundakjian, E
    Polyanovsky, A
    Keil, T
    Subramaniam, S
    Zuker, CS
    [J]. CELL, 2004, 117 (04) : 527 - 539
  • [2] Centriolar satellites: Busy orbits around the centrosome
    Baerenz, Felix
    Mayilo, Dmytro
    Gruss, Oliver J.
    [J]. EUROPEAN JOURNAL OF CELL BIOLOGY, 2011, 90 (12) : 983 - 989
  • [3] Head and flagella subcompartmental proteomic analysis of human spermatozoa
    Baker, Mark A.
    Naumovski, Nenad
    Hetherington, Louise
    Weinberg, Anita
    Velkov, Tony
    Aitken, R. John
    [J]. PROTEOMICS, 2013, 13 (01) : 61 - 74
  • [4] Brohmann H, 1997, J BIOL CHEM, V272, P10327, DOI 10.1074/jbc.272.15.10327
  • [5] Tracing the origins of centrioles, cilia, and flagella
    Carvalho-Santos, Zita
    Azimzadeh, Juliette
    Pereira-Leal, Jose B.
    Bettencourt-Dias, Monica
    [J]. JOURNAL OF CELL BIOLOGY, 2011, 194 (02) : 165 - 175
  • [6] Reconstruction of the centrosome cycle from cryoelectron micrographs
    Chrétien, D
    Buendia, B
    Fuller, SD
    Karsenti, E
    [J]. JOURNAL OF STRUCTURAL BIOLOGY, 1997, 120 (02) : 117 - 133
  • [7] Huntingtin-associated protein 1 (HAP1) interacts with the p150(Glued) subunit of dynactin
    Engelender, S
    Sharp, AH
    Colomer, V
    Tokito, MK
    Lanahan, A
    Worley, P
    Holzbaur, ELF
    Ross, CA
    [J]. HUMAN MOLECULAR GENETICS, 1997, 6 (13) : 2205 - 2212
  • [8] Proximity Interactions among Centrosome Components Identify Regulators of Centriole Duplication
    Firat-Karalar, Elif Nur
    Rauniyar, Navin
    Yates, John R., III
    Stearns, Tim
    [J]. CURRENT BIOLOGY, 2014, 24 (06) : 664 - 670
  • [9] Ultrastructure of cilia and flagella - back to the future!
    Fisch, Cathy
    Dupuis-Williams, Pascale
    [J]. BIOLOGY OF THE CELL, 2011, 103 (06) : 249 - 270
  • [10] Towards a molecular architecture of centriole assembly
    Goenczy, Pierre
    [J]. NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2012, 13 (07) : 425 - 435