Water eutrophication assessment based on rough set and multidimensional cloud model

被引:27
作者
Yan, Huyong [1 ,2 ,3 ]
Wu, Di [1 ,2 ,3 ]
Huang, Yu [1 ]
Wang, Guoyin [1 ,2 ]
Shang, Mingsheng [1 ,2 ]
Xu, Jianjun [1 ,2 ]
Shi, Xiaoyu [1 ,2 ]
Shan, Kun [1 ,2 ]
Zhou, Botian [1 ,2 ]
Zhao, Yufei [4 ]
机构
[1] Chinese Acad Sci, Chongqing Inst Green & Intelligent Technol, Big Data Min & Applicat Ctr, Chongqing 400714, Peoples R China
[2] Chinese Acad Sci, Chongqing Inst Green & Intelligent Technol, Chongqing Key Lab Big Data & Intelligent Comp, Chongqing 400714, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[4] Yubei Municipal Gardens Bur, Chongqing 401120, Peoples R China
基金
中国国家自然科学基金;
关键词
Eutrophication; Rough set; Multidimensional cloud model; LAKE EUTROPHICATION; QUALITY; RIVER; GROUNDWATER;
D O I
10.1016/j.chemolab.2017.02.005
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This investigation developed a hybrid rough set (RST) and multidimensional cloud model (RSMCM) to leverage the unique strengths of RST and cloud modeling to evaluate the trophic level. In the proposed hybrid model, RST is used to decrease the data scale and extract the qualitative rules, and the multidimensional cloud model is employed to quantitatively analyze the average values, uniformity and stability of water eutrophication. The experimental results reveal that the hybrid model achieves more accurate assessment results than other mainstream models. Therefore, the hybrid model is a promising alternative for a water eutrophication information system and offers a quantitative measure for evaluating the uniformity and stability of eutrophication in utilities management and for operations staff.
引用
收藏
页码:103 / 112
页数:10
相关论文
共 39 条
  • [1] Aizaki M., 1981, PROCEED INT ASSOCIAT, V16, P19, DOI DOI 10.1080/03680770.1980.11897067
  • [2] [Anonymous], OCEANOL LIMNOL SIN
  • [3] Field Application of the Micro Biological Survey Method for a Simple and Effective Assessment of the Microbiological Quality of Water Sources in Developing Countries
    Arienzo, Alyexandra
    Sobze, Martin Sanou
    Wadoum, Raoul Emeric Guetiya
    Losito, Francesca
    Colizzi, Vittorio
    Antonini, Giovanni
    [J]. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2015, 12 (09) : 10314 - 10328
  • [4] Chen Li-li, 2014, China Environmental Science, V34, P3223
  • [5] General multidimensional cloud model and its application on spatial clustering in Zhanjiang, Guangdong
    Deng Yu
    Liu Shenghe
    Zhang Wenting
    Wang Li
    Wang Jianghao
    [J]. JOURNAL OF GEOGRAPHICAL SCIENCES, 2010, 20 (05) : 787 - 798
  • [6] Gu XiaoHong Gu XiaoHong, 2005, Rural Eco-Environment, V21, P7
  • [7] Eutrophication and harmful algal blooms: A scientific consensus
    Heisler, J.
    Glibert, P. M.
    Burkholder, J. M.
    Anderson, D. M.
    Cochlan, W.
    Dennison, W. C.
    Dortch, Q.
    Gobler, C. J.
    Heil, C. A.
    Humphries, E.
    Lewitus, A.
    Magnien, R.
    Marshall, H. G.
    Sellner, K.
    Stockwell, D. A.
    Stoecker, D. K.
    Suddleson, M.
    [J]. HARMFUL ALGAE, 2008, 8 (01) : 3 - 13
  • [8] Pairwise learning to recommend with both users' and items' contextual information
    Huang, Zhenhua
    E, Shijia
    Zhang, Jiawen
    Zhang, Bo
    Ji, Zilian
    [J]. IET COMMUNICATIONS, 2016, 10 (16) : 2084 - 2090
  • [9] A New Cognitive Model: Cloud Model
    Li, Deyi
    Liu, Changyu
    Gan, Wenyan
    [J]. INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2009, 24 (03) : 357 - 375
  • [10] Li P., 2011, CHINA ENV MONIT ASSE, V184, P4841