TD-Net:unsupervised medical image registration network based on Transformer and CNN

被引:19
|
作者
Song, Lei [1 ,2 ]
Liu, Guixia [1 ,2 ]
Ma, Mingrui [1 ,2 ]
机构
[1] Jilin Univ, Coll Comp Sci & Technol, Changchun 130012, Jilin, Peoples R China
[2] Jilin Univ, Key Lab Symbol Computat & Knowledge Engn, Minist Educ, Changchun 130012, Jilin, Peoples R China
关键词
Deformable image registration; Deep learning; CNN; Transformer;
D O I
10.1007/s10489-022-03472-w
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Medical image registration is a fundamental task in computer-aided medical diagnosis. Recently, researchers have begun to use deep learning methods based on convolutional neural networks (CNN) for registration, and have made remarkable achievements in medical image registration. Although CNN based methods can provide rich local information on registration, their global modeling ability is weak to carry out the long distance information interaction and restrict the registration performance. The Transformer is originally used for sequence-to-sequence prediction. Now it also achieves great results in various visual tasks, due to its strong global modeling capability. Compared with CNN, Transformer can provide rich global information, in contrast, Transformer lacks of local information. To address Transformer lacks local information, we propose a hybrid network which is similar to U-Net to combine Transformer and CNN, to extract global and local information (at each level). Specifically, CNN is first used to obtain the feature maps of the image, and the Transformer is used as encoder to extract global information. Then the results obtained by Transformer encoding are connected to the upsampling process. The upsampling uses CNN to integrate local information and global information. Finally, the resolution is restored to the input image, and obtain the displacement field after several convolution layers. We evaluate our method on brain MRI scans. Experimental results demonstrate that our method improves the accuracy by 1% compared with the state-of-the-art approaches.
引用
收藏
页码:18201 / 18209
页数:9
相关论文
共 50 条
  • [31] An efficient medical image classification network based on multi-branch CNN, token grouping Transformer and mixer MLP
    Liu, Shiwei
    Wang, Liejun
    Yue, Wenwen
    APPLIED SOFT COMPUTING, 2024, 153
  • [32] Multiscale fire image detection method based on CNN and Transformer
    Shengbao Wu
    Buyun Sheng
    Gaocai Fu
    Daode Zhang
    Yuchao Jian
    Multimedia Tools and Applications, 2024, 83 : 49787 - 49811
  • [33] Multiscale fire image detection method based on CNN and Transformer
    Wu, Shengbao
    Sheng, Buyun
    Fu, Gaocai
    Zhang, Daode
    Jian, Yuchao
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (16) : 49787 - 49811
  • [34] Contrastive Registration for Unsupervised Medical Image Segmentation
    Liu, Lihao
    Aviles-Rivero, Angelica I.
    Schonlieb, Carola-Bibiane
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2025, 36 (01) : 147 - 159
  • [35] SFM-Net: Semantic Feature-Based Multi-Stage Network for Unsupervised Image Registration
    Ma, Tai
    Dai, Xinru
    Zhang, Suwei
    Zou, Haidong
    He, Lianghua
    Wen, Ying
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2025, 29 (04) : 2832 - 2844
  • [36] CNN–Transformer gated fusion network for medical image super-resolution
    Juanjuan Qin
    Jian Xiong
    Zhantu Liang
    Scientific Reports, 15 (1)
  • [37] Unsupervised deep learning-based medical image registration: a survey
    Duan, Taisen
    Chen, Wenkang
    Ruan, Meilin
    Zhang, Xuejun
    Shen, Shaofei
    Gu, Weiyu
    PHYSICS IN MEDICINE AND BIOLOGY, 2025, 70 (02)
  • [38] A swin-transformer-based network with inductive bias ability for medical image segmentation
    Gao, Yan
    Xu, Huan
    Liu, Quanle
    Bie, Mei
    Che, Xiangjiu
    APPLIED INTELLIGENCE, 2025, 55 (02)
  • [39] Pure large kernel convolutional neural network transformer for medical image registration
    Fang, Zhao
    Cao, Wenming
    INTELLIGENT DATA ANALYSIS, 2024, 28 (03) : 769 - 790
  • [40] Multiscale unsupervised network for deformable image registration
    Wang, Yun
    Chang, Wanru
    Huang, Chongfei
    Kong, Dexing
    JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY, 2024, 32 (06) : 1385 - 1398