Tuning Gold Nanoparticles with Chelating Ligands for Highly Efficient Electrocatalytic CO2 Reduction

被引:123
作者
Cao, Zhi [1 ,2 ,3 ]
Zacate, Samson B. [4 ]
Sun, Xiaodong [1 ,2 ]
Liu, Jinjia [1 ,2 ]
Hale, Elizabeth M. [4 ]
Carson, William P. [4 ]
Tyndall, Sam B. [4 ]
Xu, Jun [3 ]
Liu, Xingwu [1 ,2 ]
Liu, Xingchen [1 ,2 ]
Song, Chang [1 ,2 ]
Luo, Jheng-hua [5 ]
Cheng, Mu-Jeng [5 ]
Wen, Xiaodong [1 ,2 ]
Liu, Wei [4 ]
机构
[1] Chinese Acad Sci, State Key Lab Coal Convers, Inst Coal Chem, Taiyuan 030001, Shanxi, Peoples R China
[2] Synfuels China Technol Co Ltd, Natl Energy Ctr Coal Liquids, Beijing 101400, Peoples R China
[3] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
[4] Miami Univ, Dept Chem & Biochem, Oxford, OH 45056 USA
[5] Natl Cheng Kung Univ, Dept Chem, Tainan 701, Taiwan
基金
中国国家自然科学基金;
关键词
chelate effect; CO2; reduction; electrocatalysis; gold nanoparticles; porphyrins; CARBON-DIOXIDE; ELECTROCHEMICAL REDUCTION; FORMIC-ACID; SURFACE; SIZE; ELECTROREDUCTION; CONVERSION; PLANET;
D O I
10.1002/anie.201805696
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Capped chelating organic molecules are presented as a design principle for tuning heterogeneous nanoparticles for electrochemical catalysis. Gold nanoparticles (AuNPs) functionalized with a chelating tetradentate porphyrin ligand show a 110-fold enhancement compared to the oleylamine-coated AuNP in current density for electrochemical reduction of CO2 to CO in water at an overpotential of 340 mV with Faradaic efficiencies (FEs) of 93%. These catalysts also show excellent stability without deactivation (<5% productivity loss) within 72 hours of electrolysis. DFT calculation results further confirm the chelation effect in stabilizing molecule/NP interface and tailoring catalytic activity. This general approach is thus anticipated to be complementary to current NP catalyst design approaches.
引用
收藏
页码:12675 / 12679
页数:5
相关论文
共 52 条
[11]   Size-Dependent Electrocatalytic Reduction of CO2 over Pd Nanoparticles [J].
Gao, Dunfeng ;
Zhou, Hu ;
Wang, Jing ;
Miao, Shu ;
Yang, Fan ;
Wang, Guoxiong ;
Wang, Jianguo ;
Bao, Xinhe .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (13) :4288-4291
[12]   Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel [J].
Gao, Shan ;
Lin, Yue ;
Jiao, Xingchen ;
Sun, Yongfu ;
Luo, Qiquan ;
Zhang, Wenhua ;
Li, Dianqi ;
Yang, Jinlong ;
Xie, Yi .
NATURE, 2016, 529 (7584) :68-+
[13]   Supramolecular Porphyrin Cages Assembled at Molecular-Materials Interfaces for Electrocatalytic CO Reduction [J].
Gong, Ming ;
Cao, Zhi ;
Liu, Wei ;
Nichols, Eva M. ;
Smith, Peter T. ;
Derrick, Jeffrey S. ;
Liu, Yi-Sheng ;
Liu, Jinjia ;
Wen, Xiaodong ;
Chang, Christopher J. .
ACS CENTRAL SCIENCE, 2017, 3 (09) :1032-1040
[14]   Fluorescent Gold Nanoclusters for Selective Detection of Dopamine in Cerebrospinal fluid [J].
Govindaraju, Saravanan ;
Ankireddy, Seshadri Reddy ;
Viswanath, Buddolla ;
Kim, Jongsung ;
Yun, Kyusik .
SCIENTIFIC REPORTS, 2017, 7
[15]   Powering the planet with solar fuel [J].
Gray, Harry B. .
NATURE CHEMISTRY, 2009, 1 (01) :7-7
[16]   Ultrathin bismuth nanosheets from in situ topotactic transformation for selective electrocatalytic CO2 reduction to formate [J].
Han, Na ;
Wang, Yu ;
Yang, Hui ;
Deng, Jun ;
Wu, Jinghua ;
Li, Yafei ;
Li, Yanguang .
NATURE COMMUNICATIONS, 2018, 9
[17]  
He J., 2017, Angew. Chemie, V129, P16806, DOI 10.1002/ange.201709932
[18]   Brass and Bronze as Effective CO2 Reduction Electrocatalysts [J].
He, Jingfu ;
Dettelbach, Kevan E. ;
Huang, Aoxue ;
Berlinguette, Curtis P. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (52) :16579-16582
[19]   Determination of size and concentration of gold nanoparticles from extinction spectra [J].
Khlebtsov, Nikolai G. .
ANALYTICAL CHEMISTRY, 2008, 80 (17) :6620-6625
[20]  
Kim D., 2015, Angew Chem, V127, P3309