Tuning Gold Nanoparticles with Chelating Ligands for Highly Efficient Electrocatalytic CO2 Reduction

被引:123
作者
Cao, Zhi [1 ,2 ,3 ]
Zacate, Samson B. [4 ]
Sun, Xiaodong [1 ,2 ]
Liu, Jinjia [1 ,2 ]
Hale, Elizabeth M. [4 ]
Carson, William P. [4 ]
Tyndall, Sam B. [4 ]
Xu, Jun [3 ]
Liu, Xingwu [1 ,2 ]
Liu, Xingchen [1 ,2 ]
Song, Chang [1 ,2 ]
Luo, Jheng-hua [5 ]
Cheng, Mu-Jeng [5 ]
Wen, Xiaodong [1 ,2 ]
Liu, Wei [4 ]
机构
[1] Chinese Acad Sci, State Key Lab Coal Convers, Inst Coal Chem, Taiyuan 030001, Shanxi, Peoples R China
[2] Synfuels China Technol Co Ltd, Natl Energy Ctr Coal Liquids, Beijing 101400, Peoples R China
[3] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
[4] Miami Univ, Dept Chem & Biochem, Oxford, OH 45056 USA
[5] Natl Cheng Kung Univ, Dept Chem, Tainan 701, Taiwan
基金
中国国家自然科学基金;
关键词
chelate effect; CO2; reduction; electrocatalysis; gold nanoparticles; porphyrins; CARBON-DIOXIDE; ELECTROCHEMICAL REDUCTION; FORMIC-ACID; SURFACE; SIZE; ELECTROREDUCTION; CONVERSION; PLANET;
D O I
10.1002/anie.201805696
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Capped chelating organic molecules are presented as a design principle for tuning heterogeneous nanoparticles for electrochemical catalysis. Gold nanoparticles (AuNPs) functionalized with a chelating tetradentate porphyrin ligand show a 110-fold enhancement compared to the oleylamine-coated AuNP in current density for electrochemical reduction of CO2 to CO in water at an overpotential of 340 mV with Faradaic efficiencies (FEs) of 93%. These catalysts also show excellent stability without deactivation (<5% productivity loss) within 72 hours of electrolysis. DFT calculation results further confirm the chelation effect in stabilizing molecule/NP interface and tailoring catalytic activity. This general approach is thus anticipated to be complementary to current NP catalyst design approaches.
引用
收藏
页码:12675 / 12679
页数:5
相关论文
共 52 条
[1]   Nanostructured transition metal dichalcogenide electrocatalysts for CO2 reduction in ionic liquid [J].
Asadi, Mohammad ;
Kim, Kibum ;
Liu, Cong ;
Addepalli, Aditya Venkata ;
Abbasi, Pedram ;
Yasaei, Poya ;
Phillips, Patrick ;
Behranginia, Amirhossein ;
Cerrato, Jose M. ;
Haasch, Richard ;
Zapol, Peter ;
Kumar, Bijandra ;
Klie, Robert F. ;
Abiade, Jeremiah ;
Curtiss, Larry A. ;
Salehi-Khojin, Amin .
SCIENCE, 2016, 353 (6298) :467-470
[2]  
Cao Z., 2018, Angew. Chem, V130, P5075
[3]   Chelating N-Heterocyclic Carbene Ligands Enable Tuning of Electrocatalytic CO2 Reduction to Formate and Carbon Monoxide: Surface Organometallic Chemistry [J].
Cao, Zhi ;
Derrick, Jeffrey S. ;
Xu, Jun ;
Gao, Rui ;
Gong, Ming ;
Nichols, Eva M. ;
Smith, Peter T. ;
Liu, Xingwu ;
Wen, Xiaodong ;
Coperet, Christophe ;
Chang, Christopher J. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (18) :4981-4985
[4]   A Molecular Surface Functionalization Approach to Tuning Nanoparticle Electrocatalysts for Carbon Dioxide Reduction [J].
Cao, Zhi ;
Kim, Dohyung ;
Hong, Dachao ;
Yu, Yi ;
Xu, Jun ;
Lin, Song ;
Wen, Xiaodong ;
Nichols, Eva M. ;
Jeong, Keunhong ;
Reimer, Jeffrey A. ;
Yang, Peidong ;
Chang, Christopher J. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (26) :8120-8125
[5]   Aqueous CO2 Reduction at Very Low Overpotential on Oxide-Derived Au Nanoparticles [J].
Chen, Yihong ;
Li, Christina W. ;
Kanan, Matthew W. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (49) :19969-19972
[6]   Predicted Structures of the Active Sites Responsible for the Improved Reduction of Carbon Dioxide by Gold Nanoparticles [J].
Cheng, Tao ;
Huang, Yufeng ;
Xiao, Hai ;
Goddard, William A., III .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2017, 8 (14) :3317-3320
[7]   Reaction Mechanisms for the Electrochemical Reduction of CO2 to CO and Formate on the Cu(100) Surface at 298 K from Quantum Mechanics Free Energy Calculations with Explicit Water [J].
Cheng, Tao ;
Xiao, Hai ;
Goddard, William A., III .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (42) :13802-13805
[8]   Catalysis of the electrochemical reduction of carbon dioxide [J].
Costentin, Cyrille ;
Robert, Marc ;
Saveant, Jean-Michel .
CHEMICAL SOCIETY REVIEWS, 2013, 42 (06) :2423-2436
[9]  
ELAASAR AMM, 1982, BIOCHEMISTRY-US, V21, P1972
[10]   Understanding Selectivity for the Electrochemical Reduction of Carbon Dioxide to Formic Acid and Carbon Monoxide on Metal Electrodes [J].
Feaster, Jeremy T. ;
Shi, Chuan ;
Cave, Etosha R. ;
Hatsukade, Tom T. ;
Abram, David N. ;
Kuhl, Kendra P. ;
Hahn, Christopher ;
Norskov, Jens K. ;
Jaramillo, Thomas F. .
ACS CATALYSIS, 2017, 7 (07) :4822-4827