Redox Targeting-Based Vanadium Redox-Flow Battery

被引:78
作者
Cheng, Yuanhang [1 ]
Wang, Xun [1 ]
Huang, Songpeng [1 ]
Samarakoon, Widitha [2 ]
Xi, Shibo [3 ]
Ji, Ya [1 ]
Zhang, Hang [1 ]
Zhang, Feifei [1 ]
Du, Yonghua [3 ]
Feng, Zhenxing [2 ]
Adams, Stefan [1 ]
Wang, Qing [1 ]
机构
[1] Natl Univ Singapore, Fac Engn, Dept Mat Sci & Engn, Singapore 117576, Singapore
[2] Oregon State Univ, Sch Chem Biol & Environm Engn, Corvallis, OR 97331 USA
[3] Inst Chem & Engn Sci, 1 Pesek Rd, Jurong Island 627833, Singapore
基金
美国国家科学基金会;
关键词
POSITIVE ELECTROLYTE; PRUSSIAN BLUE; ADDITIVES;
D O I
10.1021/acsenergylett.9b01939
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The low energy density and narrow operating temperature window besides the relatively high cost of the vanadium redox-flow battery (VRB) severely hinder its commercial deployment. Herein, in conjunction with low-concentration VO2+/VO2+ catholyte, we introduce a redox targeting-based VRB (RT-VRB) system in which a Prussian blue analogue (PBA), (VO)(6)[Fe(CN)(6)](3), is employed as a capacity booster to address the above issues. The charges are reversibly stored in the PBA loaded in the cathodic tank via a redox-targeting reaction with the VO2+/VO2+. Therefore, the concentration of catholyte has been reduced to 0.6 M without sacrificing the capacity. This provides ample room to broaden the operating temperature window of a RT-VRB relative to a conventional VRB. The theoretical volumetric capacity of the PBA could reach 135 Ah/L, which is more than 3 times that of VRB. We anticipate that the RT-VRB system demonstrated here would give credible impetus for VRB chemistry for robust and high-density energy storage applications.
引用
收藏
页码:3028 / 3035
页数:15
相关论文
共 27 条
[21]   Electrochemical Energy Storage for Green Grid [J].
Yang, Zhenguo ;
Zhang, Jianlu ;
Kintner-Meyer, Michael C. W. ;
Lu, Xiaochuan ;
Choi, Daiwon ;
Lemmon, John P. ;
Liu, Jun .
CHEMICAL REVIEWS, 2011, 111 (05) :3577-3613
[22]   A green SPEEK/lignin composite membrane with high ion selectivity for vanadium redox flow battery [J].
Ye, Jiaye ;
Cheng, Yuanhang ;
Sun, Lidong ;
Ding, Mei ;
Wu, Chun ;
Yuan, Du ;
Zhao, Xiaoli ;
Xiang, Chengjie ;
Jia, Chuankun .
JOURNAL OF MEMBRANE SCIENCE, 2019, 572 :110-118
[23]   Solid electrochemical energy storage for aqueous redox flow batteries: The case of copper hexacyanoferrate [J].
Zanzola, Elena ;
Gentil, Solene ;
Gschwend, Gregoire ;
Reynard, Danick ;
Smirnov, Evgeny ;
Dennison, C. R. ;
Girault, Hubert H. ;
Peljo, Pekka .
ELECTROCHIMICA ACTA, 2019, 321
[24]   Redox-targeted catalysis for vanadium redox-flow batteries [J].
Zhang, Feifei ;
Huang, Songpeng ;
Wang, Xun ;
Jia, Chuankun ;
Du, Yonghua ;
Wang, Qing .
NANO ENERGY, 2018, 52 :292-299
[25]   Effects of additives on the stability of electrolytes for all-vanadium redox flow batteries [J].
Zhang, Jianlu ;
Li, Liyu ;
Nie, Zimin ;
Chen, Baowei ;
Vijayakumar, M. ;
Kim, Soowhan ;
Wang, Wei ;
Schwenzer, Birgit ;
Liu, Jun ;
Yang, Zhenguo .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 2011, 41 (10) :1215-1221
[26]   Prussian blue modified iron oxide magnetic nanoparticles and their high peroxidase-like activity [J].
Zhang, Xiao-Qing ;
Gong, Shang-Wenyan ;
Zhang, Yu ;
Yang, Ting ;
Wang, Chun-Yu ;
Gu, Ning .
JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (24) :5110-5116
[27]   Carbon black anchored vanadium oxide nanobelts and their post-sintering counterpart (V2O5 nanobelts) as high performance cathode materials for lithium ion batteries [J].
Zhou, Xiaowei ;
Wu, Guangming ;
Wu, Jiandong ;
Yang, Huiyu ;
Wang, Jichao ;
Gao, Guohua .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (09) :3973-3982