Randomized Probabilistic Latent Semantic Analysis for Scene Recognition

被引:0
|
作者
Rodner, Erik [1 ]
Denzler, Joachim [1 ]
机构
[1] Univ Jena, Chair Comp Vis, D-6900 Jena, Germany
来源
PROGRESS IN PATTERN RECOGNITION, IMAGE ANALYSIS, COMPUTER VISION, AND APPLICATIONS, PROCEEDINGS | 2009年 / 5856卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The concept of probabilistic Latent Semantic Analysis (pLSA) has gained much interest as a tool for feature transformation in image categorization and scene recognition scenarios. However, a major issue of this technique is overfitting. Therefore, we propose to use an ensemble of pLSA models which are trained using random fractions of the training data. We analyze empirically the influence of the degree of randomization and the size of the ensemble on the overall classification performance of a scene recognition task. A thoughtful evaluation shows the benefits of this approach compared to a single pLSA model.
引用
收藏
页码:945 / 953
页数:9
相关论文
共 50 条
  • [1] Probabilistic latent semantic analysis for dynamic textures recognition and localization
    Wang, Yong
    Hu, Shiqiang
    JOURNAL OF ELECTRONIC IMAGING, 2014, 23 (06)
  • [2] Probabilistic latent semantic analysis
    Hofmann, T
    UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 1999, : 289 - 296
  • [3] Incremental EM for Probabilistic Latent Semantic Analysis on Human Action Recognition
    Xu, Jie
    Ye, Getian
    Wang, Yang
    Herman, Gunawan
    Zhang, Bang
    Yang, Jun
    AVSS: 2009 6TH IEEE INTERNATIONAL CONFERENCE ON ADVANCED VIDEO AND SIGNAL BASED SURVEILLANCE, 2009, : 55 - 60
  • [4] Indoor Scene Recognition via Probabilistic Semantic Map
    Li, Kun
    Meng, Max Q-H
    2012 IEEE INTERNATIONAL CONFERENCE ON AUTOMATION AND LOGISTICS (ICAL), 2012, : 352 - 357
  • [5] COMPARISON OF LATENT SEMANTIC ANALYSIS AND PROBABILISTIC LATENT SEMANTIC ANALYSIS FOR DOCUMENTS CLUSTERING
    Kuta, Marcin
    Kitowski, Jacek
    COMPUTING AND INFORMATICS, 2014, 33 (03) : 652 - 666
  • [6] Latent semantic indexing: A probabilistic analysis
    Papadimitriou, CH
    Raghavan, P
    Tamaki, H
    Vempala, S
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2000, 61 (02) : 217 - 235
  • [7] Satellite Recognition via Sparse Coding Based Probabilistic Latent Semantic Analysis
    Zhao, Danpei
    Lu, Ming
    Zhang, Xuguang
    Shi, Jun
    Jiang, Zhiguo
    INTERNATIONAL JOURNAL OF HUMANOID ROBOTICS, 2014, 11 (02)
  • [8] Discriminative Probabilistic Latent Semantic Analysis with Application to Single Sample Face Recognition
    Daoxiang Zhou
    Dan Yang
    Xiaohong Zhang
    Sheng Huang
    Shu Feng
    Neural Processing Letters, 2019, 49 : 1273 - 1298
  • [9] Discriminative Probabilistic Latent Semantic Analysis with Application to Single Sample Face Recognition
    Zhou, Daoxiang
    Yang, Dan
    Zhang, Xiaohong
    Huang, Sheng
    Feng, Shu
    NEURAL PROCESSING LETTERS, 2019, 49 (03) : 1273 - 1298
  • [10] Latent Semantic Analysis for Classifying Scene Images
    Lee, Chu-Hui
    Chiang, Kun-Cheng
    INTERNATIONAL MULTICONFERENCE OF ENGINEERS AND COMPUTER SCIENTISTS (IMECS 2010), VOLS I-III, 2010, : 1467 - 1470