Graphene-based carbon-layered electrode array technology for neural imaging and optogenetic applications

被引:465
作者
Park, Dong-Wook [1 ]
Schendel, Amelia A. [2 ]
Mikael, Solomon [1 ]
Brodnick, Sarah K. [3 ]
Richner, Thomas J. [3 ]
Ness, Jared P. [3 ]
Hayat, Mohammed R. [3 ]
Atry, Farid [4 ]
Frye, Seth T. [4 ]
Pashaie, Ramin [4 ]
Thongpang, Sanitta [5 ]
Ma, Zhenqiang [1 ,2 ]
Williams, Justin C. [2 ,3 ]
机构
[1] Univ Wisconsin, Dept Elect & Comp Engn, Madison, WI 53706 USA
[2] Univ Wisconsin, Mat Sci Program, Madison, WI 53706 USA
[3] Univ Wisconsin, Dept Biomed Engn, Madison, WI 53706 USA
[4] Univ Wisconsin, Dept Elect Engn & Comp Sci, Milwaukee, WI 53211 USA
[5] Mahidol Univ, Dept Biomed Engn, Bangkok 73170, Thailand
基金
美国国家卫生研究院;
关键词
OPTICAL COHERENCE TOMOGRAPHY; MU-ECOG ARRAY; IN-VIVO; THIN-FILMS; TRANSPARENT; ANGIOGRAPHY; BRAIN; STIMULATION; INTERFACE; CELLS;
D O I
10.1038/ncomms6258
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Neural micro-electrode arrays that are transparent over a broad wavelength spectrum from ultraviolet to infrared could allow for simultaneous electrophysiology and optical imaging, as well as optogenetic modulation of the underlying brain tissue. The long-term biocompatibility and reliability of neural micro-electrodes also require their mechanical flexibility and compliance with soft tissues. Here we present a graphene-based, carbon-layered electrode array (CLEAR) device, which can be implanted on the brain surface in rodents for high-resolution neurophysiological recording. We characterize optical transparency of the device at >90% transmission over the ultraviolet to infrared spectrum and demonstrate its utility through optical interface experiments that use this broad spectrum transparency. These include optogenetic activation of focal cortical areas directly beneath electrodes, in vivo imaging of the cortical vasculature via fluorescence microscopy and 3D optical coherence tomography. This study demonstrates an array of interfacing abilities of the CLEAR device and its utility for neural applications.
引用
收藏
页数:11
相关论文
共 49 条
[1]  
Bae S, 2010, NAT NANOTECHNOL, V5, P574, DOI [10.1038/nnano.2010.132, 10.1038/NNANO.2010.132]
[2]   Optogenetic tools for analyzing the neural circuits of behavior [J].
Bernstein, Jacob G. ;
Boyden, Edward S. .
TRENDS IN COGNITIVE SCIENCES, 2011, 15 (12) :592-600
[3]  
Bonaccorso F, 2010, NAT PHOTONICS, V4, P611, DOI [10.1038/nphoton.2010.186, 10.1038/NPHOTON.2010.186]
[4]   Targeted optogenetic stimulation and recording of neurons in vivo using cell-type-specific expression of Channelrhodopsin-2 [J].
Cardin, Jessica A. ;
Carlen, Marie ;
Meletis, Konstantinos ;
Knoblich, Ulf ;
Zhang, Feng ;
Deisseroth, Karl ;
Tsai, Li-Huei ;
Moore, Christopher I. .
NATURE PROTOCOLS, 2010, 5 (02) :247-254
[5]   Mechanically strong, electrically conductive, and biocompatible graphene paper [J].
Chen, Haiqun ;
Mueller, Marc B. ;
Gilmore, Kerry J. ;
Wallace, Gordon G. ;
Li, Dan .
ADVANCED MATERIALS, 2008, 20 (18) :3557-+
[6]   Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media [J].
Chen, ZP ;
Milner, TE ;
Dave, D ;
Nelson, JS .
OPTICS LETTERS, 1997, 22 (01) :64-66
[7]   The Development and Application of Optogenetics [J].
Fenno, Lief ;
Yizhar, Ofer ;
Deisseroth, Karl .
ANNUAL REVIEW OF NEUROSCIENCE, VOL 34, 2011, 34 :389-412
[8]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[9]   Transparent and conducting ITO films:: new developments and applications [J].
Granqvist, CG ;
Hultåker, A .
THIN SOLID FILMS, 2002, 411 (01) :1-5
[10]   Photoelectrochemical cells [J].
Grätzel, M .
NATURE, 2001, 414 (6861) :338-344