NUMERICAL SIMULATION OF A SIMULATED FILM COOLED TURBINE BLADE LEADING EDGE INCLUDING CONJUGATE HEAT TRANSFER EFFECTS

被引:0
|
作者
Dobrowolski, Laurene D. [1 ]
Bogard, David G. [1 ]
Piggush, Justin
Kohli, Atul
机构
[1] Univ Texas Austin, Austin, TX 78712 USA
关键词
D O I
暂无
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
A conjugate numerical method was used to predict the normalized "metal" temperature of a simulated turbine blade leading edge. This computational study was done in conjunction with a parallel effort to experimentally determine normalized metal temperature, i.e. overall effectiveness, using a specially designed model blade leading edge. Also examined in this study were adiabatic models which provided adiabatic effectiveness results. Two different film cooling configurations were employed. The first configuration consisted of one row of holes centered on the stagnation line. The second configuration had two additional rows located at +/- 25 degrees from the stagnation line. These simulations were run at two different blowing ratios, M = 1 and M = 2. The coolant to mainstream density ratio was 1.5. The computational simulation was conducted using the FLUENT code using the realizable k-epsilon turbulence model and with grid resolution within the viscous sublayer. Adiabatic effectiveness distributions were predicted well by the computational simulations, except for localized areas near the holes. Predictions of overall effectiveness were higher than experimentally measured values in the stagnation region, but lower along downstream section of the leading edge. Reasons for the differences between computational predictions and experimental measurements were examined.
引用
收藏
页码:2145 / 2156
页数:12
相关论文
共 50 条
  • [21] Conjugate heat transfer of impingement cooling using conical nozzles with different schemes in a film-cooled blade leading-edge
    Fawzy, Hamza
    Zheng, Qun
    Jiang, Yuting
    Lin, Aqiang
    Ahmad, Naseem
    APPLIED THERMAL ENGINEERING, 2020, 177
  • [22] BEM/FVM conjugate heat transfer analysis of a three-dimensional film cooled turbine blade
    Kassab, A
    Divo, E
    Heidmann, J
    Steinthorsson, E
    Rodriguez, F
    INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2003, 13 (5-6) : 581 - 610
  • [23] Numerical simulation on impingement and film composite cooling of blade leading edge model for gas turbine
    Liu, Zhao
    Ye, Lv
    Wang, Changyee
    Feng, Zhenping
    APPLIED THERMAL ENGINEERING, 2014, 73 (02) : 1432 - 1443
  • [24] Numerical simulation on film cooling with compound angle of blade leading edge model for gas turbine
    Gao, Wen-jing
    Yue, Zhu-feng
    Li, Lei
    Zhao, Zhe-nan
    Tong, Fu-juan
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2017, 115 : 839 - 855
  • [25] Convective heat transfer through film cooling holes of a gas turbine blade leading edge
    Terrell, Elon J.
    Mouzon, Brian D.
    Bogard, David G.
    Proceedings of the ASME Turbo Expo 2005, Vol 3 Pts A and B, 2005, : 833 - 844
  • [26] Experiment on Flow and Heat Transfer of Impingement-Film Cooling for Leading Edge of Turbine Blade
    Yan, Hong-Jie
    Chen, Guan-Jiang
    Rao, Yu
    Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, 2020, 41 (12): : 2970 - 2976
  • [27] HEAT TRANSFER BOUNDARY CONDITION WAVEFORMS ON A TURBINE BLADE LEADING EDGE WITH UNSTEADY FILM COOLING
    Rutledge, James L.
    PROCEEDINGS OF THE ASME TURBO EXPO: TURBINE TECHNICAL CONFERENCE AND EXPOSITION, 2013, VOL 3B, 2013,
  • [28] Numerical Study of Flow and Heat Transfer of Impingement Cooling on Model of Turbine blade Leading Edge
    Liu, Zhao
    Feng, Zhenping
    Song, Liming
    PROCEEDINGS OF THE ASME TURBO EXPO 2010, VOL 4, PTS A AND B, 2010, : 657 - 674
  • [29] Experimental Study on Effects of Grooves on Heat Transfer Coefficient of Turbine Blade Leading Edge
    Ye L.
    Liu C.-L.
    Zhu A.-D.
    Chen L.
    Li B.-R.
    Zhu H.-R.
    Tuijin Jishu/Journal of Propulsion Technology, 2022, 43 (10):
  • [30] Numerical research on the film-cooling gas turbine blade with the conjugate heat transfer method
    Sun, H. O.
    Bu, S.
    Luan, Y. G.
    Sun, T.
    Pei, X. M.
    MATERIALS RESEARCH INNOVATIONS, 2015, 19 : 175 - 180