Characterizing Robust Solution Sets of Convex Programs under Data Uncertainty

被引:65
作者
Jeyakumar, V. [1 ]
Lee, G. M. [2 ]
Li, G. [1 ]
机构
[1] Univ New S Wales, Dept Appl Math, Sydney, NSW 2052, Australia
[2] Pukyong Natl Univ, Dept Appl Math, Pusan 608737, South Korea
基金
新加坡国家研究基金会;
关键词
Convex optimization problems with data uncertainty; Robust optimization; Optimal solution set; Uncertain convex quadratic programs; Uncertain sum-of-squares convex polynomial programs; DUALITY; OPTIMIZATION;
D O I
10.1007/s10957-014-0564-0
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
This paper deals with convex optimization problems in the face of data uncertainty within the framework of robust optimization. It provides various properties and characterizations of the set of all robust optimal solutions of the problems. In particular, it provides generalizations of the constant subdifferential property as well as the constant Lagrangian property for solution sets of convex programming to robust solution sets of uncertain convex programs. The paper shows also that the robust solution sets of uncertain convex quadratic programs and sum-of-squares convex polynomial programs under some commonly used uncertainty sets of robust optimization can be expressed as conic representable sets. As applications, it derives robust optimal solution set characterizations for uncertain fractional programs. The paper presents several numerical examples illustrating the results.
引用
收藏
页码:407 / 435
页数:29
相关论文
共 29 条
  • [1] A convex polynomial that is not sos-convex
    Ahmadi, Amir Ali
    Parrilo, Pablo A.
    [J]. MATHEMATICAL PROGRAMMING, 2012, 135 (1-2) : 275 - 292
  • [2] Duality in robust optimization: Primal worst equals dual best
    Beck, Amir
    Ben-Tal, Aharon
    [J]. OPERATIONS RESEARCH LETTERS, 2009, 37 (01) : 1 - 6
  • [3] BenTal A, 2009, PRINC SER APPL MATH, P1
  • [4] Theory and Applications of Robust Optimization
    Bertsimas, Dimitris
    Brown, David B.
    Caramanis, Constantine
    [J]. SIAM REVIEW, 2011, 53 (03) : 464 - 501
  • [5] Boyd S., 2004, CONVEX OPTIMIZATION
  • [6] CHARACTERIZATION OF SOLUTION SETS OF CONVEX-PROGRAMS
    BURKE, JV
    FERRIS, MC
    [J]. OPERATIONS RESEARCH LETTERS, 1991, 10 (01) : 57 - 60
  • [7] Castellani M, 2012, J CONVEX ANAL, V19, P113
  • [8] Robust linear semi-infinite programming duality under uncertainty
    Goberna, M. A.
    Jeyakumar, V.
    Li, G.
    Lopez, M. A.
    [J]. MATHEMATICAL PROGRAMMING, 2013, 139 (1-2) : 185 - 203
  • [9] Goldfarb D., 2003, MATH PROGRAM B, V515, P97
  • [10] Semidefinite representation of convex sets
    Helton, J. William
    Nie, Jiawang
    [J]. MATHEMATICAL PROGRAMMING, 2010, 122 (01) : 21 - 64