On Semiregular Endomorphism Rings and the Dual of Yamagata's Theorem

被引:0
作者
Kosan, Tamer [1 ]
Quynh, Truong Cong [2 ]
机构
[1] Gazi Univ, Dept Math, Fac Sci, Ankara, Turkey
[2] Univ Danang Univ Sci & Educ, Dept Math, 459 Ton Duc Thang, Da Nang City, Vietnam
关键词
delta-small submodule; delta-lifting module; delta-supplemented module; Regular ring; delta-semiregular module; delta-semipotent module; Dual Yamagata's theorem; DELTA-SEMIPERFECT RINGS; MODULES; IDEMPOTENTS; RESPECT;
D O I
10.1007/s40306-021-00444-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we characterize a module whose endomorphism ring is delta-semiregular. For a right R-module M, we also obtained dual Yamagata's theorem on the set backward difference (delta) = {f is an element of End(M)vertical bar f(M) is delta small in M}.
引用
收藏
页码:483 / 493
页数:11
相关论文
共 17 条
[1]   Some Results on delta-Semiperfect Rings and delta-Supplemented Modules [J].
Abdioolu, Cihat ;
Sahinkaya, Serap .
KYUNGPOOK MATHEMATICAL JOURNAL, 2015, 55 (02) :289-300
[2]   Semiregular modules with respect to a fully invariant submodule [J].
Alkan, M ;
Özcan, AÇ .
COMMUNICATIONS IN ALGEBRA, 2004, 32 (11) :4285-4301
[3]  
Anderson FW., 1974, RINGS CATEGORIES MOD, DOI [10.1007/978-1-4684-9913-1, DOI 10.1007/978-1-4684-9913-1]
[4]   When δ-semiperfect rings are semiperfect [J].
Buyukasik, Engin ;
Lomp, Christian .
TURKISH JOURNAL OF MATHEMATICS, 2010, 34 (03) :317-324
[5]   Rad-⊕-Supplemented Modules and Cofinitely Rad-⊕-Supplemented Modules [J].
Ecevit, Sule ;
Kosan, Muhammet T. ;
Tribak, Rachid .
ALGEBRA COLLOQUIUM, 2012, 19 (04) :637-648
[6]   On δ-semiperfect modules [J].
Hau Xuan Nguyen ;
Kosan, M. Tamer ;
Zhou, Yiqiang .
COMMUNICATIONS IN ALGEBRA, 2018, 46 (11) :4965-4977
[7]  
Kosan M. T., 2005, OPEN MATH, V3, P273, DOI [10.2478/BF02479203, DOI 10.2478/BF02479203]
[8]   δ-lifting and δ-supplemented modules [J].
Kosan, Muhammet Tamer .
ALGEBRA COLLOQUIUM, 2007, 14 (01) :53-60
[9]   ON LIFTING OF IDEMPOTENTS AND SEMIREGULAR ENDOMORPHISM RINGS [J].
Lee, Tsiu-Kwen ;
Zhou, Yiqiang .
COLLOQUIUM MATHEMATICUM, 2011, 125 (01) :99-113
[10]  
Mohamed SH., 1990, LONDON MATH SOC LNS, DOI [10.1017/CBO9780511600692, DOI 10.1017/CBO9780511600692]