Multi-objective optimization of the design and operation for snow-melting pavement with electric heating pipes

被引:44
|
作者
Liu, Kai [1 ]
Huang, Silu [1 ]
Xie, Hongzhou [1 ]
Wang, Fang [2 ]
机构
[1] Hefei Univ Technol, Sch Automobile & Traff Engn, Hefei 230009, Peoples R China
[2] Anhui Jianzhu Univ, Sch Civil Engn, Hefei 230601, Peoples R China
基金
中国国家自然科学基金;
关键词
Snow-melting pavement; Thermal simulation; Response surface methodology; Prediction model; Energy utilization analysis; Multi-objective optimization; RESPONSE-SURFACE METHODOLOGY; DEICING ROAD SYSTEM; CONCRETE; TEMPERATURE;
D O I
10.1016/j.applthermaleng.2017.05.033
中图分类号
O414.1 [热力学];
学科分类号
摘要
Snow-melting pavement with electric heating pipes (SMP-EHP) is used to mitigate the accumulated snow problem for large longitudinal slopes or slippery roads. To improve its operation efficiency, the structural model and thermal simulations of the SMP-EHP were studied. The electric heating pipe's embedded spacing (s) and embedded depth (d), the heating power (P) and the wind velocity (v) were considered as the input parameters. The total heating time (THT) and the lost energy rate (LER) for the melting process were considered as the prediction responses. The prediction models for THT and LER were proposed by using Response Surface Methodology (RSM). The single input parameter's effects on prediction responses and the interactions between them were analyzed by the assisted thermal simulation. The rationality of the prediction models and simulations were validated by statistical analysis and experiments. Additionally, for decreasing THT, LER, a multi-objective optimization on THT and the lost energy (LE) was built through the genetic algorithm. Through optimization, the recommended parameters are proposed. The results and suggestions could efficiently guide the operation of SMP-EHP. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:359 / 367
页数:9
相关论文
共 50 条
  • [31] Multi-objective Design Optimization of the NBTTL Mechanism
    Najlawi, B.
    Nejlaoui, M.
    Affi, Z.
    Romdhane, L.
    ADVANCES IN ACOUSTICS AND VIBRATION, 2017, 5 : 175 - 184
  • [32] Multi-objective optimization of nitinol stent design
    Alaimo, G.
    Auricchio, F.
    Conti, M.
    Zingales, M.
    MEDICAL ENGINEERING & PHYSICS, 2017, 47 : 13 - 24
  • [33] Validation of a multi-objective optimization framework for the sizing of pipes in DH Networks
    Merlet, Yannis
    Baviere, Roland
    Vasset, Nicolas
    ENERGY REPORTS, 2021, 7 : 473 - 482
  • [34] Initiative Optimization Operation Strategy and Multi-objective Energy Management Method for Combined Cooling Heating and Power
    Zhao, Feng
    Zhang, Chenghui
    Sun, Bo
    IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2016, 3 (04) : 385 - 393
  • [35] Initiative Optimization Operation Strategy and Multi-objective Energy Management Method for Combined Cooling Heating and Power
    Feng Zhao
    Chenghui Zhang
    Bo Sun
    IEEE/CAA Journal of Automatica Sinica, 2016, 3 (04) : 385 - 393
  • [36] Multi-objective optimization of structural fire design
    Chaudhary, Ranjit Kumar
    Gernay, Thomas
    Van Coile, Ruben
    FIRE SAFETY JOURNAL, 2024, 146
  • [37] Multi-Objective Optimization Design for Piezoresistive Accelerometer
    Liu, X. R.
    Shi, K. L.
    Zou, J. L.
    MICRO-NANO TECHNOLOGY XVII-XVIII, 2018, : 321 - 326
  • [38] Multi-objective optimization design of airfoil and wing
    Ziqiang Zhu
    Hongyan Fu
    Rixin Yu
    Jie Liu
    Science in China Series E: Technological Sciences, 2004, 47 : 15 - 25
  • [39] Multi-objective optimization design of airfoil and wing
    and WingZHU Ziqiang
    Science in China(Series E:Technological Sciences), 2004, (01) : 15 - 25
  • [40] Multi-objective reliability design optimization of electric multiple unit pantograph geometric parameters
    Chen, Bingzhi
    Li, Yonghua
    Dong, Shaodi
    Wang, Jian
    ADVANCES IN MECHANICAL ENGINEERING, 2016, 8 (10): : 1 - 10