Elevated CO2 effect on the response of stomatal control and water use efficiency in amaranth and maize plants to progressive drought stress

被引:28
|
作者
Wei, Zhenhua [1 ]
Abdelhakim, Lamis Osama Anwar [2 ]
Fang, Liang [2 ]
Peng, Xiaoying [3 ]
Liu, Jie [1 ]
Liu, Fulai [2 ]
机构
[1] Northwest A&F Univ, Key Lab Agr Soil & Water Engn Arid & Semiarid Are, Minist Educ, Yangling 712100, Shaanxi, Peoples R China
[2] Univ Copenhagen, Fac Sci, Dept Plant & Environm Sci, Hojbakkegaard Alle 13, DK-2630 Taastrup, Denmark
[3] Hunan Agr Univ, Coll Biosci & Biotechnol, Changsha 410128, Hunan, Peoples R China
关键词
Drought; Stomatal control; Plant growth; Water use efficiency; Elevated CO2; C-4; species; LEAF GAS-EXCHANGE; ATMOSPHERIC CO2; CARBON-DIOXIDE; PHOTOSYNTHETIC ACCLIMATION; TOMATO PLANTS; POTATO LEAVES; GROWTH; CONDUCTANCE; IRRIGATION; NITROGEN;
D O I
10.1016/j.agwat.2022.107609
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Rising CO2 concentration ([CO2]) in the atmosphere may modulate the response of crop plants to drought stress. This study aimed to investigate the response of leaf gas exchange and plant growth of two C-4 species representing both dicot (amaranth) and monocot (maize) to progressive drought under two different [CO2] (ambient (a[CO2], 400 ppm) and elevated (e[CO2], 800 ppm)). The soil water status in the pots was expressed as the fraction of transpirable soil water (FTSW). The results showed that as compared to a[CO2], e[CO2] significantly increased net photosynthetic rate (An) at non-stress condition (An max) for both species, while the increase was more pronounced in maize than in amaranth. Stomatal conductance (gs) at non-stress condition was significantly lower at e[CO2] in both species. The FTSW threshold, at which An starts to decrease, was higher in maize grown at e [CO2] than at a[CO2], whereas it was not affected in amaranth. In both species, gs decreased at higher FTSW threshold when grown at e[CO2] than at a[CO2]. e[CO2] decreased stomatal density (SD) in amaranth but increased it in maize; drought increased SD in amaranth but not in maize. Intrinsic water use efficiency (WUEi) was significantly enhanced by e[CO2] and drought stress at FTSW ranged from 0.0 to 0.6, particularly in maize. e [CO2] increased leaf area of well-watered plants in maize and decreased specific leaf area in amaranth. In amaranth, water consumption of well-watered plants was increased and plant WUE was decreased at e[CO2]. The varied responses of leaf gas exchange and WUE to soil water deficits and e[CO2] among the two C-4 species imply their different mechanisms in stomatal control over carbon gain versus water loss in dicot and monocot plants, which is essentially important for selecting crop species and developing strategies to optimize crop WUE in a future drier and CO2-enriched climate. The more physiological and biochemical response from soil, stomatal to plant scale related to various environments would be considered in further investigation.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Interactive Effects of Elevated CO2, Drought, and Warming on Plants
    Xu, Zhenzhu
    Shimizu, Hideyuki
    Yagasaki, Yasumi
    Ito, Shoko
    Zheng, Yuanrun
    Zhou, Guangsheng
    JOURNAL OF PLANT GROWTH REGULATION, 2013, 32 (04) : 692 - 707
  • [32] INTERACTIONS OF ELEVATED CO2 AND DROUGHT STRESS IN GAS-EXCHANGE AND WATER-USE EFFICIENCY IN 3 TEMPERATE DECIDUOUS TREE SPECIES
    LIANG, N
    MARUYAMA, K
    HUANG, Y
    PHOTOSYNTHETICA, 1995, 31 (04) : 529 - 539
  • [33] THE EFFECT OF ELEVATED ATMOSPHERIC CO2 AND DROUGHT ON STOMATAL FREQUENCY IN GROUNDNUT (ARACHIS-HYPOGAEA (L))
    CLIFFORD, SC
    BLACK, CR
    ROBERTS, JA
    STRONACH, IM
    SINGLETONJONES, PR
    MOHAMED, AD
    AZAMALI, SN
    JOURNAL OF EXPERIMENTAL BOTANY, 1995, 46 (288) : 847 - 852
  • [34] Response of growth and water use efficiency of spring wheat to whole season CO2 enrichment and drought
    Wu, DX
    Wang, GX
    Bai, YF
    Liao, HX
    Ren, HX
    ACTA BOTANICA SINICA, 2002, 44 (12): : 1477 - 1483
  • [35] Elevated CO2 Modulates N Uptake and N Use Efficiency of Tobacco (Nicotiana tabacum L.) Response to Soil Progressive Drought at Topping Stage
    Zhang, Lin
    Liu, Fulai
    Li, Guitong
    JOURNAL OF AGRONOMY AND CROP SCIENCE, 2025, 211 (01)
  • [36] Interaction of CO2 concentrations and water stress in semiarid plants causes diverging response in instantaneous water use efficiency and carbon isotope composition
    Zhao, Na
    Meng, Ping
    He, Yabing
    Yu, Xinxiao
    BIOGEOSCIENCES, 2017, 14 (14) : 3431 - 3444
  • [37] Effects of watering and CO2 on leaf photosynthesis and water use efficiency of maize
    Zheng Y.
    Liu Y.
    Yin J.
    Chang Z.
    Wang Y.
    Liu L.
    Tian Y.
    Chen W.
    Wang L.
    Hao L.
    Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2023, 39 (12): : 71 - 81
  • [38] Elevated CO2 reduces the drought effect on nitrogen metabolism in barley plants during drought and subsequent recovery
    Robredo, Anabel
    Perez-Lopez, Usue
    Miranda-Apodaca, Jon
    Lacuesta, Maite
    Mena-Petite, Amaia
    Munoz-Rueda, Alberto
    ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2011, 71 (03) : 399 - 408
  • [39] Elevated atmospheric CO2 alleviates drought stress in wheat
    Wall, GW
    AGRICULTURE ECOSYSTEMS & ENVIRONMENT, 2001, 87 (03) : 261 - 271
  • [40] Elevated CO2 effects on water use and growth of maize in wet and drying soil
    Samarakoon, AB
    Gifford, RM
    AUSTRALIAN JOURNAL OF PLANT PHYSIOLOGY, 1996, 23 (01): : 53 - 62