Bifurcation diagram of a complex delay-differential equation with cubic nonlinearity

被引:17
作者
Pieroux, D [1 ]
Mandel, P [1 ]
机构
[1] Free Univ Brussels, B-1050 Brussels, Belgium
来源
PHYSICAL REVIEW E | 2003年 / 67卷 / 05期
关键词
D O I
10.1103/PhysRevE.67.056213
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We reduce the Lang-Kobayashi equations for a semiconductor laser with external optical feedback to a single complex delay-differential equation in the long delay-time limit. The reduced equation has a time-delayed linear term and a cubic instantaneous nonlinearity. There are only two parameters, the real linewidth enhancement factor and the complex feedback strength. The equation displays a very rich dynamics and can sustain steady, periodic, quasiperiodic, and chaotic regimes. We study the steady solutions analytically and analyze the periodic solutions by using a numerical continuation method. This leads to a bifurcation diagram of the steady and periodic solutions, stable and unstable. We illustrate the chaotic regimes by a direct numerical integration and show that low frequency fluctuations still occur.
引用
收藏
页数:7
相关论文
共 44 条
  • [1] 2-DIMENSIONAL REPRESENTATION OF A DELAYED DYNAMIC SYSTEM
    ARECCHI, FT
    GIACOMELLI, G
    LAPUCCI, A
    MEUCCI, R
    [J]. PHYSICAL REVIEW A, 1992, 45 (07): : R4225 - R4228
  • [2] DYNAMICS OF A CO2-LASER WITH DELAYED FEEDBACK - THE SHORT-DELAY REGIME
    ARECCHI, FT
    GIACOMELLI, G
    LAPUCCI, A
    MEUCCI, R
    [J]. PHYSICAL REVIEW A, 1991, 43 (09): : 4997 - 5004
  • [3] Time-to-build and cycles
    Asea, PK
    Zak, PJ
    [J]. JOURNAL OF ECONOMIC DYNAMICS & CONTROL, 1999, 23 (08) : 1155 - 1175
  • [4] Analysis of optimal velocity model with explicit delay
    Bando, M
    Hasebe, K
    Nakanishi, K
    Nakayama, A
    [J]. PHYSICAL REVIEW E, 1998, 58 (05): : 5429 - 5435
  • [5] Clarke AJ, 1998, J CLIMATE, V11, P987, DOI 10.1175/1520-0442(1998)011<0987:DOTBOI>2.0.CO
  • [6] 2
  • [7] Interaction of maturation delay and nonlinear birth in population and epidemic models
    Cooke, K
    van den Driessche, P
    Zou, X
    [J]. JOURNAL OF MATHEMATICAL BIOLOGY, 1999, 39 (04) : 332 - 352
  • [8] Numerical bifurcation analysis of delay differential equations
    Engelborghs, K
    Luzyanina, T
    Roose, D
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 125 (1-2) : 265 - 275
  • [9] ENGELBORGHS K, TW305
  • [10] DELAY EFFECTS AND DIFFERENTIAL DELAY EQUATIONS IN CHEMICAL-KINETICS
    EPSTEIN, IR
    [J]. INTERNATIONAL REVIEWS IN PHYSICAL CHEMISTRY, 1992, 11 (01) : 135 - 160