Enumerating graphs via even/odd dichotomy

被引:2
|
作者
Hujdurovic, Ademir [1 ,2 ]
Kutnar, Klavdija [1 ,2 ]
Marusic, Dragan [1 ,2 ,3 ]
机构
[1] Univ Primorska, UP IAM, Muzejski Trg 2, Koper 6000, Slovenia
[2] Univ Primorska, UP FAMNIT, Glagoljaska 8, Koper 6000, Slovenia
[3] IMFM, Jadranska 19, Ljubljana 1000, Slovenia
基金
欧盟地平线“2020”;
关键词
Odd automorphism; Even automorphism; Automorphism group; Vertex-transitive graph; VERTEX-TRANSITIVE GRAPHS; NON-CAYLEY GRAPHS; ORDER;
D O I
10.1016/j.dam.2018.03.047
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Following Hujdurovit et al. (2016), an automorphism of a graph is said to be even/odd if it acts on the vertex set of the graph as an even/odd permutation. In this paper the formula for calculating the number of graphs of order n admitting odd automorphisms and the formula for calculating the number of graphs of order n without odd automorphisms are given together with their asymptotic estimates. Such numbers are also considered for the subclass ofvertex-transitive graphs. A positive integer n is a Cayley number if every vertex -transitive graph of order n is a Cayley graph. In analogy, a positive integer n is said to be a vertex-transitive-odd number (in short, a VTO-number) if every vertex-transitive graph of order n admits an odd automorphism. It is proved that there exists infinitely many VTO numbers which are square-free and have arbitrarily long prime factorizations. Further, it is proved that Cayley numbers congruent to 2 modulo 4, cubefree nilpotent Cayley numbers congruent to 3 modulo 4, and numbers of the form 2p, p a prime, are VTO numbers. At the other extreme, it is proved that for a positive integer n the complete graph Kr, and its complement are the only vertex -transitive graphs of order n admitting odd automorphisms if and only if n is a Fermat prime. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:252 / 262
页数:11
相关论文
共 30 条
  • [1] Odd extensions of transitive groups via symmetric graphs - The cubic case
    Kutnar, Klavdija
    Marusic, Dragan
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2019, 136 : 170 - 192
  • [2] Odd automorphisms in vertex-transitive graphs
    Hujdurovic, Ademir
    Kutnar, Klavdija
    Marusic, Dragan
    ARS MATHEMATICA CONTEMPORANEA, 2016, 10 (02)
  • [3] Enumerating Cayley (di-)graphs on dihedral groups
    Huang, Xueyi
    Huang, Qiongxiang
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2019, 18 (04)
  • [4] Symmetries in graphs via simplicial automorphisms
    Kutnar, Klavdija
    Marusic, Dragan
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2022, 190
  • [5] Oligomeric odd-even effect in liquid crystals
    Saha, Rony
    Babakhanova, Greta
    Parsouzi, Zeinab
    Rajabi, Mojtaba
    Gyawali, Prabesh
    Welch, Chris
    Mehl, Georg H.
    Gleeson, James
    Lavrentovich, Oleg D.
    Sprunt, Samuel
    Jakli, Antal
    MATERIALS HORIZONS, 2019, 6 (09) : 1905 - 1912
  • [6] Pairing effect on spectral statistics of even and odd mass nuclei
    Sabri, H.
    Maleki, B. Rashidian
    Fouladi, J.
    Fouladi, N.
    Jafarizadeh, M. A.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2013, 128 (06):
  • [7] Two-geodesic-transitive graphs of odd order
    Wei Jin
    Journal of Algebraic Combinatorics, 2023, 58 : 291 - 305
  • [8] Two-geodesic-transitive graphs of odd order
    Jin, Wei
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2023, 58 (01) : 291 - 305
  • [9] Hamilton cycles in (2, odd, 3)-Cayley graphs
    Glover, Henry H.
    Kutnar, Klavdija
    Malnic, Aleksander
    Marusic, Dragan
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2012, 104 : 1171 - 1197
  • [10] Even-odd-layer-dependent symmetry breaking in synthetic antiferromagnets
    Subedi, M. M.
    Deng, K.
    Flebus, B.
    Sklenar, J.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2024, 36 (37)