Glass fiber reinforced PLA composite with enhanced mechanical properties, thermal behavior, and foaming ability

被引:123
|
作者
Wang, Guilong [1 ]
Zhang, Dongmei [1 ]
Wan, Gengping [2 ]
Li, Bo [1 ]
Zhao, Guoqun [1 ]
机构
[1] Shandong Univ, Key Lab Liquid Solid Struct Evolut & Proc Mat, Minist Educ, Jinan 250061, Shandong, Peoples R China
[2] Hainan Univ, Key Lab, Chinese Educ Minist Trop Biol Resources, Haikou 570228, Hainan, Peoples R China
基金
中国国家自然科学基金;
关键词
Polylactic acid; Glass fiber; Composite; Microcellular foam; POLYLACTIC ACID; CELLULOSE; POLYMER; BLENDS; PERFORMANCE; CRYSTALLIZATION; FABRICATION; TOUGHNESS; GREEN; NANOCOMPOSITES;
D O I
10.1016/j.polymer.2019.121803
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Polylatic acid (PLA) and PLA foams show a promising prospect for replacing the traditional petroleum-based polymers and foams. However, PLA shows poor ductility, thermal stability and foaming ability, and its application is significantly limited. Herein, silane-modified glass fibers (m-GF) were adopted to improve the mechanical properties, thermal stability, and foaming ability of PLA. PLA/m-GF composites with different GF contents were firstly prepared by twin-screw compounding. Microscopic morphology analysis showed that silane-modified GF has a good bonding with PLA matrix, and increasing GF content led to slight decreased of GF length. Mechanical testing showed that GF led to simultaneously enhanced strength, rigidness, and toughness. The higher the GF content is, the more obvious the reinforcement effect is. With 20 wt% GF, the PLA/m-GF composite shows almost 2-fold enhanced strength and rigidness, and more than 3-fold enhanced impact toughness than the pure PLA. The outstanding mechanical properties arises from the strengthening effect of the GF network skeleton that shows good bonding with PLA matrix. Thermal analysis showed that GF led to increased heat deflection temperature but reduced melt flow index of PLA. Foaming experiments showed that GF can dramatically improve the foaming ability by increasing expansion ratio and refining cellular morphology. Microcellular PLA/m-GF foam with an expansion ratio of up to 20-fold and cell sizes less than 10 mu m was achieved. Thus, the strong PLA/m-GF composites and their foams show a promising future in preparing lightweight structural components used in many applications such as automotive and aircraft industries.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Mechanical, Morphological and Thermal Properties of Woven Polyester Fiber Reinforced Polylactic Acid (PLA) Composites
    Azlin, M. N. M.
    Sapuan, S. M.
    Zuhri, M. Y. M.
    Zainudin, E. S.
    FIBERS AND POLYMERS, 2022, 23 (01) : 234 - 242
  • [22] Mechanical and Thermal Properties of Bamboo Fiber-Reinforced PLA Polymer Composites: A Critical Study
    Kumar, K. Nirmal
    Babu, P. Dinesh
    Surakasi, Raviteja
    Kumar, P. Manoj
    Ashokkumar, P.
    Khan, Rashid
    Alfozan, Adel
    Gebreyohannes, Dawit Tafesse
    INTERNATIONAL JOURNAL OF POLYMER SCIENCE, 2022, 2022
  • [23] Mechanical, Thermal and Morphological Properties of Woven Kenaf Fiber Reinforced Polylactic Acid (PLA) Composites
    Mohd Azlin Mohd Nor
    Salit Mohd Sapuan
    Mohd Zuhri Mohamed Yusoff
    Edi Syams Zainudin
    Fibers and Polymers, 2022, 23 : 2875 - 2884
  • [24] Conductivity and mechanical properties of carbon black-reinforced poly(lactic acid) (PLA/CB) composites
    Guo, Jipeng
    Tsou, Chi-Hui
    Yu, Yongqi
    Wu, Chin-San
    Zhang, Xuemei
    Chen, Zhujun
    Yang, Tao
    Ge, Feifan
    Liu, Pan
    De Guzman, Manuel Reyes
    IRANIAN POLYMER JOURNAL, 2021, 30 (12) : 1251 - 1262
  • [25] Review on Mechanical and Thermal Properties of Pineapple Leaf Fiber (PALF) Reinforced Composite
    Joshi, Sarang
    Patel, Shivdayal
    JOURNAL OF NATURAL FIBERS, 2022, 19 (15) : 10157 - 10178
  • [26] Banana biofiber and glass fiber reinforced hybrid composite for lightweight structural applications: mechanical, thermal, and microstructural characterization
    Arpitha, G. R.
    Jain, Naman
    Verma, Akarsh
    BIOMASS CONVERSION AND BIOREFINERY, 2024, 14 (11) : 12589 - 12598
  • [27] Comparative study of the mechanical properties of glass and Kevlar fiber-reinforced honeycomb composite
    Tripathi, Lekhani
    Behera, Bijoya Kumar
    JOURNAL OF THE TEXTILE INSTITUTE, 2024, 115 (12) : 2636 - 2649
  • [28] Mechanical, Thermal, and Morphological Properties of Glass Fiber-reinforced Biodegradable Poly(propylene carbonate) Composites
    Chen, Weifeng
    Pang, Maizhi
    Xiao, Min
    Wang, Shuanjin
    Wen, Lishi
    Meng, Yuezhong
    JOURNAL OF REINFORCED PLASTICS AND COMPOSITES, 2010, 29 (10) : 1545 - 1550
  • [29] Mechanical properties and ultrastructural characteristics of a glass fiber-reinforced composite
    Garcia Barbero, Alvaro Enrique
    Vera Gonzalez, Vicente
    Garcia Barbero, Ernesto
    Aliaga Vera, Ignacio
    AMERICAN JOURNAL OF DENTISTRY, 2015, 28 (03) : 161 - 166
  • [30] Cellulose nanofiber reinforced poly (lactic acid) with enhanced rheology, crystallization and foaming ability
    Ren, Qian
    Wu, Minghui
    Wang, Long
    Zheng, Wenge
    Hikima, Yuta
    Semba, Takeshi
    Ohshima, Masahiro
    CARBOHYDRATE POLYMERS, 2022, 286