Weighted p-Laplacian problems on a half-line

被引:3
作者
Binding, Paul A. [1 ]
Browne, Patrick J. [2 ]
Watson, Bruce A. [3 ]
机构
[1] Univ Calgary, Dept Math & Stat, Calgary, AB T2N 1N4, Canada
[2] Univ Saskatchewan, Dept Math & Stat, Saskatoon, SK S7N 5E6, Canada
[3] Univ Witwatersrand, Sch Math, Private Bag 3, ZA-2050 Po Wits, South Africa
基金
加拿大自然科学与工程研究理事会;
关键词
p-Laplacian; Singular eigenvalue problems; Prufer angle; Indefinite weight; STURM-LIOUVILLE PROBLEMS; PRUFER ANGLE; EIGENVALUES; BOUNDS;
D O I
10.1016/j.jde.2015.09.045
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the weighted half-line eigenvalue problem -(vertical bar y'(x)vertical bar(p-1) sgn y'(x))' = (p - 1)(lambda r(x) - q(x))vertical bar y(x)vertical bar(p-1) sgn y(x), 0 <= x < infinity, for 1 < p < infinity, with initial condition y'(0) sin alpha = y(0) cos alpha, alpha is an element of [0, pi), using a modified Prufer angle phi(lambda, x). The eigenvalues lambda(k), k >= 0, with lambda(k) -> infinity as k -> infinity, are characterized by phi(lambda(k), x) -> (k +1)pi(p)-, and phi(lambda, x) -> (k + 1)pi(p)+ if lambda(k) < lambda < lambda(k+1), as x -> infinity. We allow the weight r to be locally integrable and definite, semidefinite or indefinite. In the first two cases, the sequence of eigenvalues accumulates at one of +/-infinity, and in the third, the sequence accumulates at both +/-infinity. In all cases, solutions y are nonoscillatory on (0, infinity) for all lambda. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:1372 / 1391
页数:20
相关论文
共 14 条
[1]  
[Anonymous], 2005, N HOLLAND MATH STUDI
[2]  
Binding P, 2003, STUD SCI MATH HUNG, V40, P375
[3]   GENERALIZED PRUFER ANGLE AND VARIATIONAL METHODS FOR p-LAPLACIAN EIGENVALUE PROBLEMS ON THE HALF-LINE [J].
Binding, Paul ;
Browne, Patrick J. .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2008, 51 :565-579
[4]   A Prufer angle approach to singular Sturm-Liouville problems with Molcanov potentials [J].
Binding, Paul ;
Boulton, Lyonell ;
Browne, Patrick J. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 208 (01) :226-234
[5]   STURM-LIOUVILLE PROBLEMS FOR THE p-LAPLACIAN ON A HALF-LINE [J].
Binding, Paul ;
Browne, Patrick J. ;
Karabash, Illya M. .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2010, 53 :271-291
[6]   Eigencurves of non-definite Sturm-Liouville problems for the p-Laplacian [J].
Binding, Paul A. ;
Browne, Patrick J. ;
Watson, Bruce A. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 255 (09) :2751-2777
[7]  
Brink I., 1959, Math. Scand, V7, P219, DOI [10.7146/math.scand.a-10575, DOI 10.7146/MATH.SCAND.A-10575]
[8]   Eigenvalues of the radial p-Laplacian with a potential on (0, ∞) [J].
Brown, B. M. ;
Eastham, M. S. P. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 208 (01) :111-119
[9]   Bounds for the positive eigenvalues of the p-Laplacian with decaying potential [J].
Brown, B. M. ;
Eastham, M. S. P. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 325 (01) :734-744
[10]   Eigenvalues of the radially symmetric p-Laplacian in Rn [J].
Brown, BM ;
Reichel, W .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2004, 69 :657-675