Improvements on the infinity norm bound for the inverse of Nekrasov matrices

被引:15
作者
Li, Chaoqian [1 ]
Pei, Hui [1 ]
Gao, Aning [1 ]
Li, Yaotang [1 ]
机构
[1] Yunnan Univ, Sch Math & Stat, Yunnan, Peoples R China
关键词
Infinity norm; Nekrasov matrices; H-matrices;
D O I
10.1007/s11075-015-0012-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
New bounds for the infinity norm of the inverse of Nekrasov matrices, which involve a parameter, are given. And then we determine the optimal value of the parameter such that the new bounds are better than those in Cvetkovic et al. (Appl. Math. Comput. 219, 5020-5024, 2013). Numerical examples are given to illustrate the corresponding results.
引用
收藏
页码:613 / 630
页数:18
相关论文
共 11 条
  • [1] [Anonymous], 1979, NONNEGATIVE MATRICES
  • [2] [Anonymous], 1969, Linear Algebra Appl., DOI DOI 10.1016/0024-3795(69)90029-9
  • [3] Bai Z. Z., 1993, Numer. Math. J. Univ, V2, P87
  • [4] H-matrix theory vs. eigenvalue localization
    Cvetkovic, Ljiljana
    [J]. NUMERICAL ALGORITHMS, 2006, 42 (3-4) : 229 - 245
  • [5] Infinity norm bounds for the inverse of Nekrasov matrices
    Cvetkovic, Ljiljana
    Dai, Ping-Fan
    Doroslovacki, Ksenija
    Li, Yao-Tang
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (10) : 5020 - 5024
  • [6] Max-norm bounds for the inverse of S-Nekrasov matrices
    Cvetkovic, Ljiljana
    Kostic, Vladimir
    Doroslovacki, Ksenija
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (18) : 9498 - 9503
  • [7] Hu J.-G., 1983, MATH NUMER SINICA, V5, P72
  • [8] Hu J-G., 1982, Math Numer Sin, V3, P272
  • [9] On Nekrasov matrices
    Li, W
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1998, 281 (1-3) : 87 - 96
  • [10] Tuo Q., 2011, THESIS XIANGTAN U