Improvements on the infinity norm bound for the inverse of Nekrasov matrices

被引:15
作者
Li, Chaoqian [1 ]
Pei, Hui [1 ]
Gao, Aning [1 ]
Li, Yaotang [1 ]
机构
[1] Yunnan Univ, Sch Math & Stat, Yunnan, Peoples R China
关键词
Infinity norm; Nekrasov matrices; H-matrices;
D O I
10.1007/s11075-015-0012-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
New bounds for the infinity norm of the inverse of Nekrasov matrices, which involve a parameter, are given. And then we determine the optimal value of the parameter such that the new bounds are better than those in Cvetkovic et al. (Appl. Math. Comput. 219, 5020-5024, 2013). Numerical examples are given to illustrate the corresponding results.
引用
收藏
页码:613 / 630
页数:18
相关论文
共 11 条
[1]  
[Anonymous], 1979, NONNEGATIVE MATRICES
[2]  
[Anonymous], 1969, Linear Algebra Appl., DOI DOI 10.1016/0024-3795(69)90029-9
[3]  
Bai Z. Z., 1993, Numer. Math. J. Univ, V2, P87
[4]   H-matrix theory vs. eigenvalue localization [J].
Cvetkovic, Ljiljana .
NUMERICAL ALGORITHMS, 2006, 42 (3-4) :229-245
[5]   Infinity norm bounds for the inverse of Nekrasov matrices [J].
Cvetkovic, Ljiljana ;
Dai, Ping-Fan ;
Doroslovacki, Ksenija ;
Li, Yao-Tang .
APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (10) :5020-5024
[6]   Max-norm bounds for the inverse of S-Nekrasov matrices [J].
Cvetkovic, Ljiljana ;
Kostic, Vladimir ;
Doroslovacki, Ksenija .
APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (18) :9498-9503
[7]  
Hu J.-G., 1983, MATH NUMER SINICA, V5, P72
[8]  
Hu J-G., 1982, Math Numer Sin, V3, P272
[9]   On Nekrasov matrices [J].
Li, W .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1998, 281 (1-3) :87-96
[10]  
Tuo Q., 2011, THESIS XIANGTAN U