Conformation-dependent antibacterial activity of the naturally occurring human peptide LL-37

被引:544
作者
Johansson, J
Gudmundsson, GH
Rottenberg, ME
Berndt, KD
Agerberth, B
机构
[1] Karolinska Inst, Dept Med Biochem & Biophys, S-17177 Stockholm, Sweden
[2] Karolinska Inst, Ctr Microbiol & Tumor Biol, S-17177 Stockholm, Sweden
关键词
D O I
10.1074/jbc.273.6.3718
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The influence of ion composition, pH, and peptide concentration on the conformation and activity of the 37-residue human antibacterial peptide LL-37 has been studied. At micromolar concentration in water, LL-37 exhibits a circular dichroism spectrum consistent with a disordered structure. The addition of 15 mM HCO3-, SO42-, or CF3CO2- causes the peptide to adopt a helical structure, with approximately equal efficiency, while 160 mM Cl- is less efficient, A cooperative transition from disordered to helical structure is observed as the peptide concentration is increased, consistent with formation of an oligomer, The extent of alpha-helicity correlates with the antibacterial activity of LL-37 against both Gram-positive and Gram-negative bacteria. Two homologous peptides, FF-33 and SK-29, containing 4 and 8 residue deletions at the N terminus, respectively, require higher concentrations of anions for helix formation and are less active than LL 37 against Escherichia coli D21. Below pH 5, the helical content of LL-37 gradually decreases, and at pH 2 it is entirely disordered, In contrast, the helical structure is retained at pH over 13. The minimal inhibitory concentration of LL-37 against E. coli is 5 mu M, and at 13-25 mu M the peptide is cytotoxic against several eukaryotic cells, In solutions containing the ion compositions of plasma, intracellular fluid, or interstitial fluid, LL-37 is helical, and hence it could pose a danger to human cells upon release. However, in the presence of human serum, the antibacterial and the cytotoxic activities of LL-37 are inhibited.
引用
收藏
页码:3718 / 3724
页数:7
相关论文
共 37 条
[1]   FALL-39, A PUTATIVE HUMAN PEPTIDE ANTIBIOTIC, IS CYSTEINE-FREE AND EXPRESSED IN BONE-MARROW AND TESTIS [J].
AGERBERTH, B ;
GUNNE, H ;
ODEBERG, J ;
KOGNER, P ;
BOMAN, HG ;
GUDMUNDSSON, GH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (01) :195-199
[2]   AMINO-ACID-SEQUENCE OF PR-39 - ISOLATION FROM PIG INTESTINE OF A NEW MEMBER OF THE FAMILY OF PROLINE-ARGININE-RICH ANTIBACTERIAL PEPTIDES [J].
AGERBERTH, B ;
LEE, JY ;
BERGMAN, T ;
CARLQUIST, M ;
BOMAN, HG ;
MUTT, V ;
JORNVALL, H .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1991, 202 (03) :849-854
[3]   How Hofmeister ion interactions affect protein stability [J].
Baldwin, RL .
BIOPHYSICAL JOURNAL, 1996, 71 (04) :2056-2063
[4]   PEPTIDES FROM FROG-SKIN [J].
BEVINS, CL ;
ZASLOFF, M .
ANNUAL REVIEW OF BIOCHEMISTRY, 1990, 59 :395-414
[5]   CELL-FREE IMMUNITY IN CECROPIA - A MODEL SYSTEM FOR ANTIBACTERIAL PROTEINS [J].
BOMAN, HG ;
FAYE, I ;
GUDMUNDSSON, GH ;
LEE, JY ;
LIDHOLM, DA .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1991, 201 (01) :23-31
[6]  
BOMAN HG, 1995, ANNU REV IMMUNOL, V13, P61, DOI 10.1146/annurev.iy.13.040195.000425
[7]   MECHANISMS OF ACTION ON ESCHERICHIA-COLI OF CECROPIN-P1 AND PR-39, 2 ANTIBACTERIAL PEPTIDES FROM PIG INTESTINE [J].
BOMAN, HG ;
AGERBERTH, B ;
BOMAN, A .
INFECTION AND IMMUNITY, 1993, 61 (07) :2978-2984
[8]   SECONDARY STRUCTURE AND MEMBRANE INTERACTION OF PR-39, A PRO+ARG-RICH ANTIBACTERIAL PEPTIDE [J].
CABIAUX, V ;
AGERBERTH, B ;
JOHANSSON, J ;
HOMBLE, F ;
GOORMAGHTIGH, E ;
RUYSSCHAERT, JM .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1994, 224 (03) :1019-1027
[9]  
CREIGHTON TE, 1993, PROTEINS STRUCTURE M, P262
[10]   Inducible expression of an antibiotic peptide gene in lipopolysaccharide-challenged tracheal epithelial cells [J].
Diamond, G ;
Russell, JP ;
Bevins, CL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (10) :5156-5160