Object Detection and Classification Using GPU Acceleration

被引:2
作者
Prabhu, Shreyank [1 ]
Khopkar, Vishal [1 ]
Nivendkar, Swapnil [1 ]
Satpute, Omkar [1 ]
Jyotinagar, Varshapriya [1 ]
机构
[1] Veermata Jijabai Technol Inst, Mumbai 400019, Maharashtra, India
来源
COMPUTATIONAL VISION AND BIO-INSPIRED COMPUTING | 2020年 / 1108卷
关键词
Graphics processer unit; GPU; Object detection; Image processing; HOG; OpenCL; Self-driving cars; SVM;
D O I
10.1007/978-3-030-37218-7_18
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In order to speed up the image processing for self-driving cars, we propose a solution for fast vehicle classification using GPU computation. Our solution uses Histogram of Oriented Gradients (HOG) for feature extraction and Support Vector Machines (SVM) for classification. Our algorithm achieves a higher processing rate in frames per second (FPS) by using multi-core GPUs without compromising on its accuracy. The implementation of our GPU programming is in OpenCL, which is a platform independent library. We used a dataset of images of cars and other non-car objects on road to feed it to the classifier.
引用
收藏
页码:161 / 170
页数:10
相关论文
共 7 条
  • [1] Azzopardi B., 2016, THESIS U MALTAS
  • [2] GPU-based pedestrian detection for autonomous driving
    Campmany, V.
    Silva, S.
    Espinosa, A.
    Moure, J. C.
    Vazquez, D.
    Lopez, A. M.
    [J]. INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE 2016 (ICCS 2016), 2016, 80 : 2377 - 2381
  • [3] Cheng KM, 2013, IEEE SYM EMBED SYST, P88, DOI 10.1109/ESTIMedia.2013.6704507
  • [4] Histograms of oriented gradients for human detection
    Dalal, N
    Triggs, B
    [J]. 2005 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 1, PROCEEDINGS, 2005, : 886 - 893
  • [5] Gurjar P., 2013, INT J ENG SCI MATH, V2, P10
  • [6] Naik N, 2015, ARXIV PREPRINT ARXIV
  • [7] Schaa D., 2015, HETEROGENEOUS COMPUT, V3rd, P75