Gorenstein Graphic Matroids

被引:3
作者
Hibi, Takayuki [1 ]
Lason, Michal [2 ]
Matsuda, Kazunori [3 ]
Michalek, Mateusz [2 ,4 ,5 ]
Vodicka, Martin [4 ]
机构
[1] Osaka Univ, Grad Sch Informat Sci & Technol, Dept Pure & Appl Math, Suita, Osaka 5650871, Japan
[2] Polish Acad Sci, Inst Math, PL-00656 Warsaw, Poland
[3] Kitami Inst Technol, Kitami, Hokkaido 0908507, Japan
[4] Max Planck Inst, Math Sci, Inselstr 22, D-04103 Leipzig, Germany
[5] Aalto Univ, Espoo, Finland
关键词
EHRHART POLYNOMIALS; H-VECTORS; POLYTOPES;
D O I
10.1007/s11856-021-2136-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The toric variety of a matroid is projectively normal, and therefore it is Cohen-Macaulay. We provide a complete graph-theoretic classification when the toric variety of a graphic matroid is Gorenstein.
引用
收藏
页码:1 / 26
页数:26
相关论文
共 24 条
  • [1] Batyrev V.V., 1994, J. Alg. Geom., V3, P493
  • [2] The toric ideal of a graphic matroid is generated by quadrics
    Blasiak, Jonah
    [J]. COMBINATORICA, 2008, 28 (03) : 283 - 297
  • [3] Bruns W, 2009, SPRINGER MONOGR MATH, P1, DOI 10.1007/b105283
  • [4] h-Vectors of Gorenstein polytopes
    Bruns, Winfried
    Roemer, Tim
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2007, 114 (01) : 65 - 76
  • [5] Cox D. A., 2011, TORIC VARIETIES, V124
  • [6] Cox DA, 2014, ELECTRON J COMB, V21
  • [7] Feichtner EM, 2005, PORT MATH, V62, P437
  • [8] Fulton W., 1993, Annals of Mathematics Studies, V131, DOI DOI 10.1515/9781400882526
  • [9] COMBINATORIAL GEOMETRIES, CONVEX POLYHEDRA, AND SCHUBERT CELLS
    GELFAND, IM
    GORESKY, RM
    MACPHERSON, RD
    SERGANOVA, VV
    [J]. ADVANCES IN MATHEMATICS, 1987, 63 (03) : 301 - 316
  • [10] Discrete polymatroids
    Herzog, J
    Hibi, T
    [J]. JOURNAL OF ALGEBRAIC COMBINATORICS, 2002, 16 (03) : 239 - 268