Quantile regression with censored data using generalized L(1) minimization

被引:27
作者
Lindgren, A [1 ]
机构
[1] LUND UNIV,DEPT MED & PHYSIOL CHEM,LUND,SWEDEN
关键词
quantile regression; L(1) minimization; right censoring; Kaplan-Meier estimator;
D O I
10.1016/S0167-9473(96)00048-5
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We propose a way to estimate a parametric quantile function when the dependent variable, e.g. the survival time, is censored. We discuss one way to do this, transforming the problem of finding the p-quantile for the true, uncensored, survival times into a problem of finding the q-quantile for the observed, censored, times. The q-value involves the distribution of the censoring times, which is unknown. The estimation of the quantile function is done using the asymmetric L(1) technique with weights involving local Kaplan-Meier estimates of the distribution of the censoring limit.
引用
收藏
页码:509 / 524
页数:16
相关论文
共 4 条
  • [1] GENTLE JE, 1987, STAT DATA ANAL BASED
  • [2] REGRESSION QUANTILES
    KOENKER, R
    BASSETT, G
    [J]. ECONOMETRICA, 1978, 46 (01) : 33 - 50
  • [3] QUANTILE REGRESSION - A NONPARAMETRIC APPROACH
    LEJEUNE, MG
    SARDA, P
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1988, 6 (03) : 229 - 239
  • [4] LINDGREN A, 1993, THESIS U LUND