Multi-factor data normalization enables the detection of copy number aberrations in amplicon sequencing data

被引:96
作者
Boeva, Valentina [1 ,2 ,3 ]
Popova, Tatiana [2 ,4 ]
Lienard, Maxime [5 ]
Toffoli, Sebastien [5 ]
Kamal, Maud [6 ]
Le Tourneau, Christophe [1 ,7 ]
Gentien, David [8 ]
Servant, Nicolas [1 ,2 ,3 ]
Gestraud, Pierre [1 ,2 ,3 ]
Frio, Thomas Rio [9 ]
Hupe, Philippe [1 ,2 ,3 ,10 ]
Barillot, Emmanuel [1 ,2 ,3 ]
Laes, Jean-Francois [11 ]
机构
[1] INSERM, U900, F-75248 Paris, France
[2] Inst Curie, Ctr Rech, F-75248 Paris, France
[3] Mines ParisTech, F-77300 Fontainebleau, France
[4] INSERM, U830, F-75248 Paris, France
[5] Inst Pathol & Genet, B-6041 Gosselies, Belgium
[6] Ctr Rech, Dept Clin Res, F-75248 Paris, France
[7] Ctr Rech, Dept Med Oncol, F-75248 Paris, France
[8] Ctr Rech, Dept Rech Translat, Plateforme Genom, F-75248 Paris, France
[9] Inst Curie, Next Generat Sequencing Platform, F-75248 Paris, France
[10] CNRS, UMR144, F-75248 Paris, France
[11] OncoDNA, B-6041 Gosselies, Belgium
关键词
CIRCULAR BINARY SEGMENTATION; CANCER GENOME; TOOL;
D O I
10.1093/bioinformatics/btu436
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Because of its low cost, amplicon sequencing, also known as ultra-deep targeted sequencing, is now becoming widely used in oncology for detection of actionable mutations, i.e. mutations influencing cell sensitivity to targeted therapies. Amplicon sequencing is based on the polymerase chain reaction amplification of the regions of interest, a process that considerably distorts the information on copy numbers initially present in the tumor DNA. Therefore, additional experiments such as single nucleotide polymorphism ( SNP) or comparative genomic hybridization (CGH) arrays often complement amplicon sequencing in clinics to identify copy number status of genes whose amplification or deletion has direct consequences on the efficacy of a particular cancer treatment. So far, there has been no proven method to extract the information on gene copy number aberrations based solely on amplicon sequencing. Results: Here we present ONCOCNV, a method that includes a multifactor normalization and annotation technique enabling the detection of large copy number changes from amplicon sequencing data. We validated our approach on high and low amplicon density datasets and demonstrated that ONCOCNV can achieve a precision comparable with that of array CGH techniques in detecting copy number aberrations. Thus, ONCOCNV applied on amplicon sequencing data would make the use of additional array CGH or SNP array experiments unnecessary.
引用
收藏
页码:3443 / 3450
页数:8
相关论文
共 22 条
  • [1] CoNVEX: copy number variation estimation in exome sequencing data using HMM
    Amarasinghe, Kaushalya C.
    Li, Jason
    Halgamuge, Saman K.
    [J]. BMC BIOINFORMATICS, 2013, 14
  • [2] [Anonymous], 2012, 597 U WASH DEP STAT
  • [3] Combining Highly Multiplexed PCR with Semiconductor-Based Sequencing for Rapid Cancer Genotyping
    Beadling, Carol
    Neff, Tanaya L.
    Heinrich, Michael C.
    Rhodes, Katherine
    Thornton, Michael
    Leamon, John
    Andersen, Mark
    Corless, Christopher L.
    [J]. JOURNAL OF MOLECULAR DIAGNOSTICS, 2013, 15 (02) : 171 - 176
  • [4] CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING
    BENJAMINI, Y
    HOCHBERG, Y
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) : 289 - 300
  • [5] Control-FREEC: a tool for assessing copy number and allelic content using next-generation sequencing data
    Boeva, Valentina
    Popova, Tatiana
    Bleakley, Kevin
    Chiche, Pierre
    Cappo, Julie
    Schleiermacher, Gudrun
    Janoueix-Lerosey, Isabelle
    Delattre, Olivier
    Barillot, Emmanuel
    [J]. BIOINFORMATICS, 2012, 28 (03) : 423 - 425
  • [6] Control-free calling of copy number alterations in deep-sequencing data using GC-content normalization
    Boeva, Valentina
    Zinovyev, Andrei
    Bleakley, Kevin
    Vert, Jean-Philippe
    Janoueix-Lerosey, Isabelle
    Delattre, Olivier
    Barillot, Emmanuel
    [J]. BIOINFORMATICS, 2011, 27 (02) : 268 - 269
  • [7] Cleveland W.S., 1992, Statistical Models in S, P309, DOI DOI 10.1201/9780203738535-8
  • [8] Model-based clustering, discriminant analysis, and density estimation
    Fraley, C
    Raftery, AE
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2002, 97 (458) : 611 - 631
  • [9] Lessons from the Cancer Genome
    Garraway, Levi A.
    Lander, Eric S.
    [J]. CELL, 2013, 153 (01) : 17 - 37
  • [10] Correcting for cancer genome size and tumour cell content enables better estimation of copy number alterations from next-generation sequence data
    Gusnanto, Arief
    Wood, Henry M.
    Pawitan, Yudi
    Rabbitts, Pamela
    Berri, Stefano
    [J]. BIOINFORMATICS, 2012, 28 (01) : 40 - 47