Sputtering Deposition of Sn-Mo-Based Composite Anode for Thin-Film Li-Ion Batteries

被引:3
作者
Chandran, T. Mani [1 ]
Balaji, S. [1 ]
机构
[1] Thiagarajar Coll Engn, Thiagarajar Adv Res Ctr, Dept Chem, Mat Technol Lab, Madurai 625015, Tamil Nadu, India
关键词
Sputtering; thin film; composite material; atomic force microscopy; TIN; FABRICATION; ELECTRODES;
D O I
10.1007/s11664-016-4461-1
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The role of electrochemically inactive molybdenum in alleviating the anomalous volume expansion of tin anode upon charge-discharge cycling has been investigated. Tin-molybdenum thin-film composite anodes for Li-ion batteries were prepared using a direct-current sputtering method from a tin metal target incorporating molybdenum element. Results of structural and compositional analyses confirmed the presence of tin and molybdenum. The elemental ratio obtained from energy-dispersive x-ray spectroscopy confirmed the feasibility of tailoring the thin-film composition by varying the ratio of metallic elements present in the sputtering target. Scanning electron micrographs of the samples revealed the occurrence of flower-like open morphology with Mo inclusion in a Sn matrix. The gravimetric discharge capacity for pure Sn, Sn-rich, and Mo-rich samples was 733 mAh g(-1), 572 mAh g(-1), and 439 mAh g(-1), respectively, with capacity retention after 50 cycles of 22%, 61%, and 74%, respectively. Mo inclusion reduced the surface resistivity of the Sn anode after the initial charge-discharge cycle. The charge-transfer resistance after the first cycle for pure Sn, Sn-rich, and Mo-rich samples was 17.395 Omega, 5.345 Omega, and 2.865 Omega, respectively. The lithium-ion diffusion coefficient also increased from 8.68 x 10(-8) cm(2)S(-1) for the pure Sn sample to 2.98 x 10(-5) cm(2)S(-1) for the Mo-rich sample.
引用
收藏
页码:3220 / 3226
页数:7
相关论文
共 50 条
[31]   Development and characterization of a novel silicon-based glassy composite as an anode material for Li-ion batteries [J].
Wang, Xiuyan ;
Wen, Zhaoyin ;
Liu, Yu ;
Huang, Ying ;
Wen, Ting-Lian .
SOLID STATE IONICS, 2011, 192 (01) :330-334
[32]   Novel hollow Sn-Cu composite nanoparticles anodes for Li-ion batteries prepared by galvanic replacement reaction [J].
Fan, Xin ;
Tang, Xiaona ;
Ma, Daqian ;
Bi, Peng ;
Jiang, Anni ;
Zhu, Jin ;
Xu, Xinhua .
JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2014, 18 (04) :1137-1145
[33]   Si/SnSb alloy composite as high capacity anode materials for Li-ion batteries [J].
Guo, Hong ;
Zhao, Hailei ;
Yin, Chaoli ;
Qiu, Weihua .
JOURNAL OF ALLOYS AND COMPOUNDS, 2006, 426 (1-2) :277-280
[34]   Cycling performance of density modulated multilayer silicon thin film anodes in Li-ion batteries [J].
Demirkan, M. T. ;
Trahey, L. ;
Karabacak, T. .
JOURNAL OF POWER SOURCES, 2015, 273 :52-61
[35]   Electrospun Fe3O4-Sn@Carbon Nanofibers Composite as Efficient Anode Material for Li-Ion Batteries [J].
Wang, Hong ;
Ma, Yuejin ;
Zhang, Wenming .
NANOMATERIALS, 2021, 11 (09)
[36]   Controlling surface morphology of Sn thin-film to enhance cycling performance in lithium ion batteries [J].
Li, Yuan ;
Matsuura, Ryo ;
Saka, Masumi .
MATERIALS RESEARCH BULLETIN, 2017, 87 :155-160
[37]   Three-dimensional Li2O-NiO-CoO composite thin-film anode with network structure for lithium-ion batteries [J].
Zhang, P. ;
Guo, Z. P. ;
Kang, S. G. ;
Choi, Y. J. ;
Kim, C. J. ;
Kim, K. W. ;
Liu, H. K. .
JOURNAL OF POWER SOURCES, 2009, 189 (01) :566-570
[38]   Predicting Capacity Fade in Silicon Anode-Based Li-Ion Batteries [J].
Dasari, Harika ;
Eisenbraun, Eric .
ENERGIES, 2021, 14 (05)
[39]   Preparation of Si-Based Composite Anode for Li-Ion Batteries by Cold Spraying and Its Electrochemical Performance [J].
Song, Jun ;
Li, Huijie ;
Chu, Xiaowan ;
Jiang, Mingjie ;
Wan, Chi ;
Zhang, Qi ;
Chen, Yuhui ;
Zhang, Jun ;
Wu, Xuehong ;
Liu, Juanfang .
JOURNAL OF THERMAL SPRAY TECHNOLOGY, 2023, 32 (05) :1203-1219
[40]   Highly Reversible Sn-Co Alloy Anode Using Porous Cu Foam Substrate for Li-Ion Batteries [J].
Nam, Do-Hwan ;
Kim, Ryoung-Hee ;
Lee, Cho-Long ;
Kwon, Hyuk-Sang .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2012, 159 (11) :A1822-A1826