Sputtering Deposition of Sn-Mo-Based Composite Anode for Thin-Film Li-Ion Batteries

被引:3
作者
Chandran, T. Mani [1 ]
Balaji, S. [1 ]
机构
[1] Thiagarajar Coll Engn, Thiagarajar Adv Res Ctr, Dept Chem, Mat Technol Lab, Madurai 625015, Tamil Nadu, India
关键词
Sputtering; thin film; composite material; atomic force microscopy; TIN; FABRICATION; ELECTRODES;
D O I
10.1007/s11664-016-4461-1
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The role of electrochemically inactive molybdenum in alleviating the anomalous volume expansion of tin anode upon charge-discharge cycling has been investigated. Tin-molybdenum thin-film composite anodes for Li-ion batteries were prepared using a direct-current sputtering method from a tin metal target incorporating molybdenum element. Results of structural and compositional analyses confirmed the presence of tin and molybdenum. The elemental ratio obtained from energy-dispersive x-ray spectroscopy confirmed the feasibility of tailoring the thin-film composition by varying the ratio of metallic elements present in the sputtering target. Scanning electron micrographs of the samples revealed the occurrence of flower-like open morphology with Mo inclusion in a Sn matrix. The gravimetric discharge capacity for pure Sn, Sn-rich, and Mo-rich samples was 733 mAh g(-1), 572 mAh g(-1), and 439 mAh g(-1), respectively, with capacity retention after 50 cycles of 22%, 61%, and 74%, respectively. Mo inclusion reduced the surface resistivity of the Sn anode after the initial charge-discharge cycle. The charge-transfer resistance after the first cycle for pure Sn, Sn-rich, and Mo-rich samples was 17.395 Omega, 5.345 Omega, and 2.865 Omega, respectively. The lithium-ion diffusion coefficient also increased from 8.68 x 10(-8) cm(2)S(-1) for the pure Sn sample to 2.98 x 10(-5) cm(2)S(-1) for the Mo-rich sample.
引用
收藏
页码:3220 / 3226
页数:7
相关论文
共 50 条
[1]   Sputtering Deposition of Sn–Mo-Based Composite Anode for Thin-Film Li-Ion Batteries [J].
T. Mani Chandran ;
S. Balaji .
Journal of Electronic Materials, 2016, 45 :3220-3226
[2]   Fabrication of Sn-Ni alloy film anode for Li-ion batteries by electrochemical deposition [J].
Zhang Da-wei ;
Yang Chen-ge ;
Dai Jun ;
Wen Jian-wu ;
Wang Long ;
Chen Chun-hua .
TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2009, 19 (06) :1489-1493
[3]   Progress on Sn-based thin-film anode materials for lithium-ion batteries [J].
Hu RenZong ;
Liu Hui ;
Zeng MeiQin ;
Liu JiangWen ;
Zhu Min .
CHINESE SCIENCE BULLETIN, 2012, 57 (32) :4119-4130
[4]   Electrochemical performance of pyrolyzed polyacrylonitrile (PAN) based Sn/C composite anode for Li-ion batteries [J].
Chang, Won-Seok ;
Park, Cheol-Min ;
Sohn, Hun-Joon .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2012, 671 :67-72
[5]   AC Magnetron Sputtering: An Industrial Approach for High-Voltage and High-Performance Thin-Film Cathodes for Li-Ion Batteries [J].
Rikarte, Jokin ;
Madinabeitia, Inaki ;
Baraldi, Giorgio ;
Fernandez-Carretero, Francisco Jose ;
Bellido-Gonzalez, Victor ;
Garcia-Luis, Alberto ;
Munoz-Marquez, Miguel angel .
ADVANCED MATERIALS INTERFACES, 2021, 8 (10)
[6]   Simple design of a Si-Sn-C ternary composite anode for Li-ion batteries [J].
Yang, Ho-Sung ;
Lee, Byoung-Sun ;
Yu, Woong-Ryeol .
JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2021, 98 :275-282
[7]   Progress on Sn-based thin-film anode materials for lithium-ion batteries [J].
HU RenZong .
Science Bulletin, 2012, (32) :4119-4130
[8]   Atomic Layer Deposition of SnO2-Based Composite Anodes for Thin-Film Lithium-Ion Batteries [J].
Zhao, Bo ;
Dhara, Arpan ;
Dendooven, Jolien ;
Detavernier, Christophe .
FRONTIERS IN ENERGY RESEARCH, 2020, 8
[9]   Polyimide capping layer on improving electrochemical stability of silicon thin-film for Li-ion batteries [J].
Lee, Pui-Kit ;
Tahmasebi, Mohammad H. ;
Tan, Tian ;
Ran, Sijia ;
Boles, Steven T. ;
Yu, Denis Y. W. .
MATERIALS TODAY ENERGY, 2019, 12 :297-302
[10]   Electrochemical characteristics of a-Si thin film anode for Li-ion rechargeable batteries [J].
Lee, KL ;
Jung, JY ;
Lee, SW ;
Moon, HS ;
Park, JW .
JOURNAL OF POWER SOURCES, 2004, 129 (02) :270-274