A Hybrid Differential Evolution for Numerical Optimization

被引:0
作者
Miao, Xiaofeng [1 ,2 ]
Mu, Dejun [1 ]
Han, Xingwen [3 ]
Zhang, Degang [1 ]
机构
[1] Northwest Polytech Univ, Sch Automat, Xian, Peoples R China
[2] Yaan Univ, Xian Innovat Coll, Yaan, Peoples R China
[3] Northwestern Polytech Univ, Sch Elect & Informat, Xian, Peoples R China
来源
PROCEEDINGS OF THE 2009 2ND INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING AND INFORMATICS, VOLS 1-4 | 2009年
关键词
differential evolution; self-adapting; optimization;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Differential evolution is a well-known optimization technique to deal with nonlinear and complex problems. However, it suffers from some difficulties, such as expensive computation, problem-dependent parameters, etc. In order to tackle these problems, this paper presents a hybrid DE algorithm, called SAODE, by employing opposition-based learning (OBL) and a self-adapting mechanism to adjust parameters. Experimental results on six benchmark functions show that the proposed approach SAODE outperforms opposition-based DE (ODE), self-adapting DE (SADE), classical evolutionary programming (CEP) and fast evolutionary programming (FEP) on most test functions.
引用
收藏
页码:2115 / +
页数:2
相关论文
共 12 条
[1]   Population set-based global optimization algorithms:: some modifications and numerical studies [J].
Ali, MM ;
Törn, A .
COMPUTERS & OPERATIONS RESEARCH, 2004, 31 (10) :1703-1725
[2]   Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems [J].
Brest, Janez ;
Greiner, Saso ;
Boskovic, Borko ;
Mernik, Marjan ;
Zumer, Vijern .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2006, 10 (06) :646-657
[3]   A trigonometric mutation operation to differential evolution [J].
Fan, HY ;
Lampinen, J .
JOURNAL OF GLOBAL OPTIMIZATION, 2003, 27 (01) :105-129
[4]   A fuzzy adaptive differential evolution algorithm [J].
Liu, J ;
Lampinen, J .
SOFT COMPUTING, 2005, 9 (06) :448-462
[5]   Self-adaptive differential evolution algorithm for numerical optimization [J].
Qin, AK ;
Suganthan, PN .
2005 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-3, PROCEEDINGS, 2005, :1785-1791
[6]   Opposition-based differential evolution [J].
Rahnamayan, Shahryar ;
Tizhoosh, Hamid R. ;
Salama, Magdy M. A. .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2008, 12 (01) :64-79
[7]   Differential evolution - A simple and efficient heuristic for global optimization over continuous spaces [J].
Storn, R ;
Price, K .
JOURNAL OF GLOBAL OPTIMIZATION, 1997, 11 (04) :341-359
[8]  
SUN J, 2004, INFORM SCI, V169, P249
[9]  
Vesterstrom J, 2004, IEEE C EVOL COMPUTAT, P1980
[10]  
Yang ZY, 2008, NAT COMPUT SER, P397, DOI 10.1007/978-3-540-72960-0_19