A new linear discriminant analysis algorithm based on L1-norm maximization and locality preserving projection
被引:7
作者:
Zhang, Di
论文数: 0引用数: 0
h-index: 0
机构:
Guangdong Med Univ, Sch Informat Engn, Dongguan, Peoples R ChinaGuangdong Med Univ, Sch Informat Engn, Dongguan, Peoples R China
Zhang, Di
[1
]
Li, Xueqiang
论文数: 0引用数: 0
h-index: 0
机构:
Guangdong Med Univ, Sch Informat Engn, Dongguan, Peoples R ChinaGuangdong Med Univ, Sch Informat Engn, Dongguan, Peoples R China
Li, Xueqiang
[1
]
He, Jiazhong
论文数: 0引用数: 0
h-index: 0
机构:
Shaoguan Univ, Dept Phys, Shaoguan, Peoples R ChinaGuangdong Med Univ, Sch Informat Engn, Dongguan, Peoples R China
He, Jiazhong
[2
]
Du, Minghui
论文数: 0引用数: 0
h-index: 0
机构:
South China Univ Technol, Sch Elect & Informat, Guangzhou, Guangdong, Peoples R ChinaGuangdong Med Univ, Sch Informat Engn, Dongguan, Peoples R China
Du, Minghui
[3
]
机构:
[1] Guangdong Med Univ, Sch Informat Engn, Dongguan, Peoples R China
[2] Shaoguan Univ, Dept Phys, Shaoguan, Peoples R China
[3] South China Univ Technol, Sch Elect & Informat, Guangzhou, Guangdong, Peoples R China
Feature extraction;
Linear discriminant analysis;
Local information;
L1-norm;
L2-norm;
Pattern classification;
DIMENSIONALITY REDUCTION;
FEATURE-EXTRACTION;
GENETIC ALGORITHM;
FACE;
FRAMEWORK;
LDA;
D O I:
10.1007/s10044-017-0594-y
中图分类号:
TP18 [人工智能理论];
学科分类号:
081104 ;
0812 ;
0835 ;
1405 ;
摘要:
Generic L2-norm-based linear discriminant analysis (LDA) is sensitive to outliers and only captures global structure information of sample points. In this paper, a new LDA-based feature extraction algorithm is proposed to integrate both global and local structure information via a unified L1-norm optimization framework. Unlike generic L2-norm-based LDA, the proposed algorithm explicitly incorporates the local structure information of sample points and is robust to outliers. It overcomes the problem of the singularity of within-class scatter matrix as well. Experiments on several popular datasets demonstrate the effectiveness of the proposed algorithm.