High-performance zinc-ion batteries enabled by electrochemically induced transformation of vanadium oxide cathodes

被引:0
|
作者
Li, Yang [1 ]
Yang, Wang [2 ]
Yang, Wu [2 ]
Huang, Yongfeng [3 ]
Wang, Guoxiu [2 ]
Xu, Chengjun [3 ]
Kang, Feiyu [3 ]
Dong, Liubing [1 ,2 ]
机构
[1] Jinan Univ, Coll Chem & Mat Sci, Guangzhou 511443, Guangdong, Peoples R China
[2] Univ Technol Sydney, Ctr Clean Energy Technol, Sydney, NSW 2007, Australia
[3] Tsinghua Univ, Tsinghua Shenzhen Int Grad Sch, Shenzhen 518055, Guangdong, Peoples R China
来源
JOURNAL OF ENERGY CHEMISTRY | 2021年 / 60卷
基金
中国国家自然科学基金; 澳大利亚研究理事会;
关键词
Zinc-ion battery; Cathode material; Vanadium oxide; Electrochemically induced transformation; HIGH-CAPACITY; HYBRID CAPACITORS; ENERGY-STORAGE; TIO2; ANATASE; HIGH-POWER; ALPHA-MNO2; MECHANISM; INSERTION; MN3O4; ANODE;
D O I
10.1016/j.jechem.2021.01.0252095-4956/
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Rechargeable aqueous zinc-ion batteries (ZIBs) have become a research hotspot in recent years, due to their huge potential for high-energy, fast-rate, safe and low-cost energy storage. To realize good electrochemical properties of ZIBs, cathode materials with prominent Zn2+ storage capability are highly needed. Herein, we report a promising ZIB cathode material based on electrochemically induced transformation of vanadium oxides. Specifically, K2V6O16.1.5H2O nanofibers were synthesized through a simple stirring method at near room temperature and then used as cathode materials for ZIBs in different electrolytes. The cathode presented superior Zn2+ storage capability in Zn(OTf)2 aqueous electrolyte, including high capacity of 321 mAh/g, fast charge/discharge ability (96 mAh/g delivered in 35 s), high energy density of 235 Wh/kg and good cycling performance. Mechanism analysis evidenced that in Zn(OTf)(2) electrolyte, Zn2+ intercalation in the first discharge process promoted K(2)V(6)O16.1.5H(2)O nanofibers to transform into Zn-3+xV(2)O(7)(OH)2.2H(2)O nanoflakes, and the latter served as the Zn2+-storage host in subsequent charge/discharge processes. Benefiting from open-framework crystal structure and sufficiently exposed surface, the Zn-3+xV(2)O(7)(OH)2.2H(2)O nanoflakes exhibited high Zn2+ diffusion coefficient, smaller charge-transfer resistance and good reversibility of Zn2+ intercalation/de-intercalation, thus leading to superior electrochemical performance. While in ZnSO4 aqueous electrolyte, the cathode material cannot sufficiently transform into Zn(3+)xV(2)O(7)(OH)2.2H(2)O, thereby corresponding to inferior electrochemical behaviors. Underlying mechanism and influencing factors of such a transformation phenomenon was also explored. This work not only reports a high-performance ZIB cathode material based on electrochemically induced transformation of vanadium oxides, but also provides new insights into Zn2+-storage electrochemistry. (C) 2021 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by ELSEVIER B.V. and Science Press. All rights reserved.
引用
收藏
页码:233 / 240
页数:8
相关论文
共 50 条
  • [31] Advancing Vanadium MXene Cathodes: Strategic Enhancements for Superior Performance in Zinc-Ion Batteries
    Jenitha, M.
    Durgalakshmi, D.
    Kishore, M. R. Ashwin
    Balakumar, S.
    Rakkesh, R. Ajay
    ADVANCED SUSTAINABLE SYSTEMS, 2025,
  • [32] Development of vanadium oxides as cathodes in aqueous zinc-ion batteries: A mini review
    Jin, Hao
    Li, Rong
    Zhu, Limin
    Qiu, Xuejing
    Yang, Xinli
    Xie, Lingling
    Yi, Lanhua
    Cao, Xiaoyu
    ELECTROCHEMISTRY COMMUNICATIONS, 2024, 159
  • [33] Advances of Metal Oxide Composite Cathodes for Aqueous Zinc-Ion Batteries
    Kumankuma-Sarpong, James
    Guo, Wei
    Fu, Yongzhu
    ADVANCED ENERGY AND SUSTAINABILITY RESEARCH, 2022, 3 (06):
  • [34] Organic Nanosheets of Imide-Linked Cathodes for High-Performance Aqueous Zinc-Ion Batteries
    Feng, Qin
    Cao, Yingnan
    Guo, Chaofei
    Chen, Ling
    Sun, Weiwei
    Wang, Yong
    ACS APPLIED ENERGY MATERIALS, 2023, 6 (15) : 7899 - 7907
  • [35] Spontaneous Growth of Alkali Metal Ion-Preintercalated Vanadium Pentoxide for High-Performance Aqueous Zinc-Ion Batteries
    Fan, Lanlan
    Li, Zhenhuan
    Kang, Weimin
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2021, 9 (14) : 5095 - 5104
  • [36] Vanadium pentoxide nanosheets as cathodes for aqueous zinc-ion batteries with high rate capability and long durability
    Wang, Xinyu
    Ma, Liwen
    Zhang, Pengchao
    Wang, Hongyu
    Li, Song
    Ji, Shijun
    Wen, Zhongsheng
    Sun, Juncai
    APPLIED SURFACE SCIENCE, 2020, 502
  • [37] High-Performance Aqueous Zinc-Ion Batteries Realized by MOF Materials
    Xuechao Pu
    Baozheng Jiang
    Xianli Wang
    Wenbao Liu
    Liubing Dong
    Feiyu Kang
    Chengjun Xu
    Nano-Micro Letters, 2020, 12
  • [38] Poly(3,4-ethylenedioxythiophene)-Polystyrenesulfonate-Added Layered Vanadium Oxide Cathode for High-Performance Zinc-Ion Batteries
    Du, Yihe
    Chen, Yue
    Yang, Mingzhe
    Zou, Situo
    Song, Xiaoqiang
    Fu, Yujun
    Li, Junshuai
    Li, Yali
    He, Deyan
    ACS APPLIED ENERGY MATERIALS, 2021, 4 (12): : 14582 - 14589
  • [39] Expanded hydrated vanadate for high-performance aqueous zinc-ion batteries
    Liu, Chaofeng
    Neale, Zachary
    Zheng, Jiqi
    Jia, Xiaoxiao
    Huang, Juanjuan
    Yan, Mengyu
    Tian, Meng
    Wang, Mingshan
    Yang, Jihui
    Cao, Guozhong
    ENERGY & ENVIRONMENTAL SCIENCE, 2019, 12 (07) : 2273 - 2285
  • [40] Defected vanadium bronzes as superb cathodes in aqueous zinc-ion batteries
    Li, Jianwei
    Luo, Ningjing
    Wan, Feng
    Zhao, Siyu
    Li, Zhuangnan
    Li, Wenyao
    Guo, Jian
    Shearing, Paul R.
    Brett, Dan J. L.
    Carmalt, Claire J.
    Chai, Guoliang
    He, Guanjie
    Parkin, Ivan P.
    NANOSCALE, 2020, 12 (40) : 20638 - 20648