High-performance zinc-ion batteries enabled by electrochemically induced transformation of vanadium oxide cathodes

被引:0
|
作者
Li, Yang [1 ]
Yang, Wang [2 ]
Yang, Wu [2 ]
Huang, Yongfeng [3 ]
Wang, Guoxiu [2 ]
Xu, Chengjun [3 ]
Kang, Feiyu [3 ]
Dong, Liubing [1 ,2 ]
机构
[1] Jinan Univ, Coll Chem & Mat Sci, Guangzhou 511443, Guangdong, Peoples R China
[2] Univ Technol Sydney, Ctr Clean Energy Technol, Sydney, NSW 2007, Australia
[3] Tsinghua Univ, Tsinghua Shenzhen Int Grad Sch, Shenzhen 518055, Guangdong, Peoples R China
来源
基金
中国国家自然科学基金; 澳大利亚研究理事会;
关键词
Zinc-ion battery; Cathode material; Vanadium oxide; Electrochemically induced transformation; HIGH-CAPACITY; HYBRID CAPACITORS; ENERGY-STORAGE; TIO2; ANATASE; HIGH-POWER; ALPHA-MNO2; MECHANISM; INSERTION; MN3O4; ANODE;
D O I
10.1016/j.jechem.2021.01.0252095-4956/
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Rechargeable aqueous zinc-ion batteries (ZIBs) have become a research hotspot in recent years, due to their huge potential for high-energy, fast-rate, safe and low-cost energy storage. To realize good electrochemical properties of ZIBs, cathode materials with prominent Zn2+ storage capability are highly needed. Herein, we report a promising ZIB cathode material based on electrochemically induced transformation of vanadium oxides. Specifically, K2V6O16.1.5H2O nanofibers were synthesized through a simple stirring method at near room temperature and then used as cathode materials for ZIBs in different electrolytes. The cathode presented superior Zn2+ storage capability in Zn(OTf)2 aqueous electrolyte, including high capacity of 321 mAh/g, fast charge/discharge ability (96 mAh/g delivered in 35 s), high energy density of 235 Wh/kg and good cycling performance. Mechanism analysis evidenced that in Zn(OTf)(2) electrolyte, Zn2+ intercalation in the first discharge process promoted K(2)V(6)O16.1.5H(2)O nanofibers to transform into Zn-3+xV(2)O(7)(OH)2.2H(2)O nanoflakes, and the latter served as the Zn2+-storage host in subsequent charge/discharge processes. Benefiting from open-framework crystal structure and sufficiently exposed surface, the Zn-3+xV(2)O(7)(OH)2.2H(2)O nanoflakes exhibited high Zn2+ diffusion coefficient, smaller charge-transfer resistance and good reversibility of Zn2+ intercalation/de-intercalation, thus leading to superior electrochemical performance. While in ZnSO4 aqueous electrolyte, the cathode material cannot sufficiently transform into Zn(3+)xV(2)O(7)(OH)2.2H(2)O, thereby corresponding to inferior electrochemical behaviors. Underlying mechanism and influencing factors of such a transformation phenomenon was also explored. This work not only reports a high-performance ZIB cathode material based on electrochemically induced transformation of vanadium oxides, but also provides new insights into Zn2+-storage electrochemistry. (C) 2021 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by ELSEVIER B.V. and Science Press. All rights reserved.
引用
收藏
页码:233 / 240
页数:8
相关论文
共 50 条
  • [21] Review of vanadium-based oxide cathodes as aqueous zinc-ion batteries
    Min Chen
    Shu-Chao Zhang
    Zheng-Guang Zou
    Sheng-Lin Zhong
    Wen-Qin Ling
    Jing Geng
    Fang-An Liang
    Xiao-Xiao Peng
    Yang Gao
    Fa-Gang Yu
    Rare Metals, 2023, 42 : 2868 - 2905
  • [22] Electrochemical Activation in Vanadium Oxide with Rich Oxygen Vacancies for High-Performance Aqueous Zinc-Ion Batteries
    Liang, Fangan
    Chen, Min
    Zhang, Shuchao
    Zou, Zhengguang
    Ge, Chuanqi
    Jia, Shengkun
    Le, Shangwang
    Yu, Fagang
    Nong, Jinxia
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2024, 12 (13) : 5117 - 5128
  • [23] Using MXene as a Chemically Induced Initiator to Construct High-Performance Cathodes for Aqueous Zinc-Ion Batteries
    Chen, Jie
    Liu, Yanpeng
    Xiao, Baoquan
    Huang, Juanjuan
    Chen, Hongwei
    Zhu, Kun
    Zhang, Junkai
    Cao, Guozhong
    He, Guanjie
    Ma, Jing
    Peng, Shanglong
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2024, 63 (35)
  • [24] K+-regulated vanadium oxide heterostructure enables high-performance aqueous zinc-ion batteries
    Li, Haibing
    Zhu, Liyun
    Fan, Weijun
    Xiao, Yi
    Wu, Jiadong
    Mi, Hongyu
    Zhang, Fumin
    Yang, Linyu
    CRYSTENGCOMM, 2024, : 191 - 201
  • [25] Hydrophobic interface induced by Fluorine doping enhances vanadium oxide cathodes for aqueous Zinc-Ion batteries
    Deng, Shiyao
    Yan, Xuemin
    Jiang, Yu
    Li, Aixin
    Zhang, Ruijie
    Qu, Yongheng
    Xie, Zhizhong
    CHEMICAL ENGINEERING JOURNAL, 2025, 503
  • [26] Al-induced fast phase transition in vanadium oxide cathode materials for high-performance aqueous zinc-ion batteries
    Dai, Youye
    Kong, Xianghua
    Wang, Lei
    Gu, Yuanxiang
    Guo, Jun
    CRYSTENGCOMM, 2025, 27 (06) : 801 - 808
  • [27] Naphthoquinone-intercalated vanadium oxide for high-performance zinc-ion battery
    Ying Guo
    Yang Liu
    Kai Li
    Yun Gong
    Journal of Solid State Electrochemistry, 2023, 27 : 2579 - 2592
  • [28] Naphthoquinone-intercalated vanadium oxide for high-performance zinc-ion battery
    Guo, Ying
    Liu, Yang
    Li, Kai
    Gong, Yun
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2023, 27 (10) : 2579 - 2592
  • [29] Electrochemically activated MnO cathodes for high performance aqueous zinc-ion battery
    Li, Wenjie
    Gao, Xu
    Chen, Zanyu
    Guo, Ruiting
    Zou, Guoqiang
    Hou, Hongshuai
    Deng, Wentao
    Ji, Xiaobo
    Zhao, Jia
    CHEMICAL ENGINEERING JOURNAL, 2020, 402 (402)
  • [30] Fast Zn2+ kinetics of vanadium oxide nanotubes in high-performance rechargeable zinc-ion batteries
    Yang, Fei
    Zhu, Yuanmin
    Xia, Yu
    Xiang, Shuhuai
    Han, Shaobo
    Cai, Chao
    Wang, Qi
    Wang, Yian
    Gu, Meng
    JOURNAL OF POWER SOURCES, 2020, 451