Heteroscedastic modelling via the autoregressive conditional variance subspace

被引:10
作者
Park, Jin-Hong [1 ]
Samadi, S. Yaser [2 ]
机构
[1] Coll Charleston, Dept Math, Charleston, SC 29424 USA
[2] Univ Georgia, Dept Stat, Athens, GA 30602 USA
来源
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE | 2014年 / 42卷 / 03期
关键词
Autoregressive central variance subspace; autoregressive conditional heteroscedasticity; financial time series; Kernel method; modified information criterion; SLICED INVERSE REGRESSION; DIMENSION REDUCTION; IDENTIFICATION; BOOTSTRAP;
D O I
10.1002/cjs.11222
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The paper deals with nonparametric estimation of the conditional variance of a time series based on a nonlinear autoregressive model in the squared innovation time series, which does not require specification of a model. We introduce a notion called the autoregressive central variance subspace (ACVS) to obtain the information included in the conditional variance of time series data. We use the squared time series to identify the ACVS by a nonparametric kernel method. In addition, we simultaneously estimate the unknown dimension and lag of the ACVS by a modified information criterion. Finally, we investigate the performance of all the estimators including the ACVS through simulations and a real analysis, which suggests implementing a new dimension reduction approach to modelling time series data that exhibits volatility. (C) 2014 Statistical Society of Canada
引用
收藏
页码:423 / 435
页数:13
相关论文
共 50 条
[21]   Selecting the forgetting factor in subset autoregressive modelling [J].
Brailsford, TJ ;
Penm, JHW ;
Terrell, RD .
JOURNAL OF TIME SERIES ANALYSIS, 2002, 23 (06) :629-649
[22]   Automatic variance ratio test under conditional heteroskedasticity [J].
Kim, Jae H. .
FINANCE RESEARCH LETTERS, 2009, 6 (03) :179-185
[23]   Tests for the equality of conditional variance functions in nonparametric regression [J].
Carlos Pardo-Fernandez, Juan ;
Dolores Jimenez-Gamero, Maria ;
El Ghouch, Anouar .
ELECTRONIC JOURNAL OF STATISTICS, 2015, 9 (02) :1826-1851
[24]   PREINTEGRATION VIA ACTIVE SUBSPACE [J].
Liu, S. I. F. A. N. ;
Owen, Art B. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2023, 61 (02) :495-514
[25]   A generalized least squares estimation method for the autoregressive conditional duration model [J].
Lu, Wanbo ;
Ke, Rui .
STATISTICAL PAPERS, 2019, 60 (01) :123-146
[26]   A Goodness-of-Fit Test for a Class of Autoregressive Conditional Duration Models [J].
Perera, Indeewara ;
Hidalgo, Javier ;
Silvapulle, Mervyn J. .
ECONOMETRIC REVIEWS, 2016, 35 (06) :1111-1141
[27]   Gaussian Mixture-Based Autoregressive Error Model with a Conditionally Heteroscedastic Hierarchical Framework for Bayesian Updating of Structures [J].
Sengupta, Partha ;
Chakraborty, Subrata ;
Mishra, Sudib Kumar .
ASCE-ASME JOURNAL OF RISK AND UNCERTAINTY IN ENGINEERING SYSTEMS PART A-CIVIL ENGINEERING, 2024, 10 (03)
[28]   Assessing conditional causal effect via characteristic score [J].
Hu, Zonghui .
STATISTICS IN MEDICINE, 2021, 40 (24) :5188-5198
[29]   Robust modelling of periodic vector autoregressive time series [J].
Ursu, Eugen ;
Pereau, Jean-Christophe .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2014, 155 :93-106
[30]   Serial independence tests for innovations of conditional mean and variance models [J].
Ghoudi, Kilani ;
Remillard, Bruno .
TEST, 2018, 27 (01) :3-26