Effect of the active material type and battery geometry on the thermal behavior of lithium-ion batteries

被引:17
|
作者
Miranda, D. [1 ]
Almeida, A. M. [2 ]
Lanceros-Mendez, S. [3 ,4 ]
Costa, C. M. [2 ,5 ]
机构
[1] 2Ai Polytech Inst Covado & Ave, Campus IPCA, P-4750810 Barcelos, Portugal
[2] Univ Minho, Ctr Fis, P-4710057 Braga, Portugal
[3] Univ Basque Country, Basque Ctr Mat Applicat & Nanostruct, BCMat, Sci Pk, E-48940 Leioa, Spain
[4] Ikerbasque, Basque Fdn Sci, Bilbao 48013, Spain
[5] Univ Minho, Ctr Quim, P-4710057 Braga, Portugal
关键词
Thermal analysis; Lithium-ion battery; Active materials; Geometries; Computer simulation; ENERGY-STORAGE; CATHODE MATERIALS; IRON-PHOSPHATE; DISCHARGE; SIMULATION; PERFORMANCE; ISSUES; CHARGE; MODEL; ELECTROLYTES;
D O I
10.1016/j.energy.2019.07.099
中图分类号
O414.1 [热力学];
学科分类号
摘要
The effect of different thermal conditions on battery performance has been evaluated by computer simulation through a thermal model coupled to the electrochemical model. Three different active materials, lithium cobalt oxide, LiCoO2, lithium iron phosphate, LiFePO4 and lithium manganese oxide, LiMn2O4, were evaluated together with two battery geometries: conventional and interdigitated. The delivered capacity of the different active materials and both geometries were thus obtained as a function of the scan rate and correlated with the produced reversible, reaction, ohmic and total heat. For isothermal conditions, the highest capacity is obtained for LiCoO2, being 739,31 Ahm(-2) at 1C for the conventional geometry. Further, battery performance as a function of the scan rate is independent of the geometry and similar for the different active materials. Under adiabatic conditions and independent geometry, LiFePO4 produces lower heat in the discharge process, the temperature ranging from 298 K to 308.9 K when the battery operates up to 500C for and interdigitated geometry with eight digits, which is critical for improving battery safety. This fact is also confirmed by the ohmic heat value along the cathode at the rate of 300C, which is 42700 W m(-3), 118000 W m(-3) and 69000 W m(-3 )for LiFePO4, LiMn2O4 and LiCoO2 respectively, for a conventional geometry as at a time of 50s of battery operation. Thus, it is demonstrated how battery geometry and the intrinsic parameters of the active materials affect the heat generated by the batteries and, considering the balance between cycle performance and thermal properties, the best active material for improved battery safety and performance is LiFePO4. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1250 / 1262
页数:13
相关论文
共 50 条
  • [41] Single-material lithium-ion battery
    Canter, Neil
    TRIBOLOGY & LUBRICATION TECHNOLOGY, 2015, 71 (08) : 14 - 16
  • [42] Thermal behavior and failure mechanism of large format lithium-ion battery
    Lu, Daban
    Lin, Shaoxiong
    Hu, Shuwan
    Cui, Wen
    Fang, Tingting
    Iqbal, Azhar
    Zhang, Zheng
    Peng, Wen
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2021, 25 (01) : 315 - 325
  • [43] Temperature effect and thermal impact in lithium-ion batteries: A review
    Shuai Ma
    Modi Jiang
    Peng Tao
    Chengyi Song
    Jianbo Wu
    Jun Wang
    Tao Deng
    Wen Shang
    Progress in Natural Science:Materials International, 2018, 28 (06) : 653 - 666
  • [44] Quantitative Analysis of Lithium-Ion Battery Eruption Behavior in Thermal Runaway
    Xing, Yu
    Wei, Ningning
    Li, Minghai
    BATTERIES-BASEL, 2024, 10 (06):
  • [45] Modeling and experimenting the thermal behavior of a lithium-ion battery on a electric vehicle
    Ayche, S.
    Daboussy, M.
    Aglzim, El-H.
    2018 THIRD INTERNATIONAL CONFERENCE ON ELECTRICAL AND BIOMEDICAL ENGINEERING, CLEAN ENERGY AND GREEN COMPUTING (EBECEGC), 2018, : 16 - 22
  • [46] Thermal behavior and failure mechanism of large format lithium-ion battery
    Daban Lu
    Shaoxiong Lin
    Shuwan Hu
    Wen Cui
    Tingting Fang
    Azhar Iqbal
    Zheng Zhang
    Wen Peng
    Journal of Solid State Electrochemistry, 2021, 25 : 315 - 325
  • [47] Temperature effect and thermal impact in lithium-ion batteries: A review
    Ma, Shuai
    Jiang, Modi
    Tao, Peng
    Song, Chengyi
    Wu, Jianbo
    Wang, Jun
    Deng, Tao
    Shang, Wen
    PROGRESS IN NATURAL SCIENCE-MATERIALS INTERNATIONAL, 2018, 28 (06) : 653 - 666
  • [48] Probing the Role of Electrode Microstructure in the Lithium-Ion Battery Thermal Behavior
    Chen, Chien-Fan
    Verma, Ankit
    Mukherjee, Partha P.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (11) : E3146 - E3158
  • [49] Stable Multicomponent Multiphase All Active Material Lithium-Ion Battery Anodes
    Cai, Chen
    Gao, Lin
    Sun, Tao
    Koenig Jr, Gary M.
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (29) : 34662 - 34674
  • [50] EPDM Flame Retardant & Thermal Protection Material in Thermal Runaway of Lithium-ion Batteries
    Li, Xiang-Mei
    Qiao, Yu
    Wang, Shu-Ping
    Chen, Jing-Hui
    Fan, Ming-Hao
    Gao, Fei
    He, Ji-Yu
    Yang, Kai
    Yang, Rong-Jie
    Beijing Ligong Daxue Xuebao/Transaction of Beijing Institute of Technology, 2020, 40 (06): : 674 - 682