Effect of the active material type and battery geometry on the thermal behavior of lithium-ion batteries

被引:17
|
作者
Miranda, D. [1 ]
Almeida, A. M. [2 ]
Lanceros-Mendez, S. [3 ,4 ]
Costa, C. M. [2 ,5 ]
机构
[1] 2Ai Polytech Inst Covado & Ave, Campus IPCA, P-4750810 Barcelos, Portugal
[2] Univ Minho, Ctr Fis, P-4710057 Braga, Portugal
[3] Univ Basque Country, Basque Ctr Mat Applicat & Nanostruct, BCMat, Sci Pk, E-48940 Leioa, Spain
[4] Ikerbasque, Basque Fdn Sci, Bilbao 48013, Spain
[5] Univ Minho, Ctr Quim, P-4710057 Braga, Portugal
关键词
Thermal analysis; Lithium-ion battery; Active materials; Geometries; Computer simulation; ENERGY-STORAGE; CATHODE MATERIALS; IRON-PHOSPHATE; DISCHARGE; SIMULATION; PERFORMANCE; ISSUES; CHARGE; MODEL; ELECTROLYTES;
D O I
10.1016/j.energy.2019.07.099
中图分类号
O414.1 [热力学];
学科分类号
摘要
The effect of different thermal conditions on battery performance has been evaluated by computer simulation through a thermal model coupled to the electrochemical model. Three different active materials, lithium cobalt oxide, LiCoO2, lithium iron phosphate, LiFePO4 and lithium manganese oxide, LiMn2O4, were evaluated together with two battery geometries: conventional and interdigitated. The delivered capacity of the different active materials and both geometries were thus obtained as a function of the scan rate and correlated with the produced reversible, reaction, ohmic and total heat. For isothermal conditions, the highest capacity is obtained for LiCoO2, being 739,31 Ahm(-2) at 1C for the conventional geometry. Further, battery performance as a function of the scan rate is independent of the geometry and similar for the different active materials. Under adiabatic conditions and independent geometry, LiFePO4 produces lower heat in the discharge process, the temperature ranging from 298 K to 308.9 K when the battery operates up to 500C for and interdigitated geometry with eight digits, which is critical for improving battery safety. This fact is also confirmed by the ohmic heat value along the cathode at the rate of 300C, which is 42700 W m(-3), 118000 W m(-3) and 69000 W m(-3 )for LiFePO4, LiMn2O4 and LiCoO2 respectively, for a conventional geometry as at a time of 50s of battery operation. Thus, it is demonstrated how battery geometry and the intrinsic parameters of the active materials affect the heat generated by the batteries and, considering the balance between cycle performance and thermal properties, the best active material for improved battery safety and performance is LiFePO4. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1250 / 1262
页数:13
相关论文
共 50 条
  • [21] Recovering Lithium from the Cathode Active Material in Lithium-Ion Batteries via Thermal Decomposition
    Kuzuhara, Shunsuke
    Ota, Mina
    Tsugita, Fuka
    Kasuya, Ryo
    METALS, 2020, 10 (04) : 1 - 13
  • [22] Geometry-influenced cooling performance of lithium-ion battery
    Dubey, Dwijendra
    Mishra, A.
    Ghosh, Subrata
    Reddy, M. V.
    Pandey, Ramesh
    APPLIED THERMAL ENGINEERING, 2023, 230
  • [23] Thermal management of lithium-ion battery cells using 3D printed phase change composites
    Nofal, Malek
    Al-Hallaj, Said
    Pan, Yayue
    APPLIED THERMAL ENGINEERING, 2020, 171
  • [24] Suppressing Thermal Runaway of Lithium-ion Batteries by Using Insulation Material
    Wu, Zhuoyan
    Jia, Jun
    Yin, Likun
    Zhong, Weidong
    Kang, Zhe
    Jiang, Zhuoyu
    2022 4TH INTERNATIONAL CONFERENCE ON SMART POWER & INTERNET ENERGY SYSTEMS, SPIES, 2022, : 1838 - 1843
  • [25] Parameterized evaluation of thermal characteristics for a lithium-ion battery
    Gu, Li
    Gui, John Yupeng
    Wang, Jing, V
    Zhu, Guorong
    Kang, Jianqiang
    ENERGY, 2019, 178 : 21 - 32
  • [26] Thermal and electric inhomogeneity in lithium-ion battery packs
    Huang, Jinpeng
    Long, Rui
    Ma, Liang
    Liu, Zhichun
    Liu, Wei
    APPLIED THERMAL ENGINEERING, 2025, 269
  • [27] Investigation of polyimide as an anode material for lithium-ion battery and its thermal safety behavior
    Jianwei He
    Yucong Liao
    Qian Hu
    Zhaowei Zeng
    Lei Yi
    Yadong Wang
    Huijuan Lu
    Mu Pan
    Ionics, 2020, 26 : 3343 - 3350
  • [28] Investigation of polyimide as an anode material for lithium-ion battery and its thermal safety behavior
    He, Jianwei
    Liao, Yucong
    Hu, Qian
    Zeng, Zhaowei
    Yi, Lei
    Wang, Yadong
    Lu, Huijuan
    Pan, Mu
    IONICS, 2020, 26 (07) : 3343 - 3350
  • [29] Quantitative Analysis of Lithium-Ion Battery Eruption Behavior in Thermal Runaway
    Xing, Yu
    Wei, Ningning
    Li, Minghai
    BATTERIES-BASEL, 2024, 10 (06):
  • [30] Thermal management of lithium-ion batteries for electric vehicles
    Karimi, G.
    Li, X.
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2013, 37 (01) : 13 - 24