Extensions on ellipsoid bounds for quadratic integer programming

被引:2
作者
Fampa, Marcia [1 ]
Pinillos Nieto, Francisco [1 ]
机构
[1] Univ Fed Rio de Janeiro, Rio De Janeiro, Brazil
关键词
Quadratic integer programming; Ellipsoid bound; Integer relaxation; OPTIMIZATION; RELAXATIONS; ALGORITHM;
D O I
10.1007/s10898-017-0557-2
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Ellipsoid bounds for strictly convex quadratic integer programs have been proposed in the literature. The idea is to underestimate the strictly convex quadratic objective function q of the problem by another convex quadratic function with the same continuous minimizer as q and for which an integer minimizer can be easily computed. We initially propose in this paper a different way of constructing the quadratic underestimator for the same problem and then extend the idea to other quadratic integer problems, where the objective function is convex (not strictly convex), and where the objective function is nonconvex and box constraints are introduced. The quality of the bounds proposed is evaluated experimentally and compared to the related existing methodologies.
引用
收藏
页码:457 / 482
页数:26
相关论文
共 24 条
[1]   The DC (difference of convex functions) programming and DCA revisited with DC models of real world nonconvex optimization problems [J].
An, LTH ;
Tao, PD .
ANNALS OF OPERATIONS RESEARCH, 2005, 133 (1-4) :23-46
[2]  
[Anonymous], 1998, J GLOBAL OPTIM
[3]   Semidefinite programming versus the reformulation-linearization technique for nonconvex quadratically constrained quadratic programming [J].
Anstreicher, Kurt M. .
JOURNAL OF GLOBAL OPTIMIZATION, 2009, 43 (2-3) :471-484
[4]   Semidefinite relaxations for quadratically constrained quadratic programming: A review and comparisons [J].
Bao, Xiaowei ;
Sahinidis, Nikolaos V. ;
Tawarmalani, Mohit .
MATHEMATICAL PROGRAMMING, 2011, 129 (01) :129-157
[5]  
Boas P., 1981, Tech. Rep. 81-04
[6]   AN EXACT ALGORITHM FOR NONCONVEX QUADRATIC INTEGER MINIMIZATION USING ELLIPSOIDAL RELAXATIONS [J].
Buchheim, C. ;
De Santis, M. ;
Palagi, L. ;
Piacentini, M. .
SIAM JOURNAL ON OPTIMIZATION, 2013, 23 (03) :1867-1889
[7]   A fast branch-and-bound algorithm for non-convex quadratic integer optimization subject to linear constraints using ellipsoidal relaxations [J].
Buchheim, Christoph ;
De Santis, Marianna ;
Palagi, Laura .
OPERATIONS RESEARCH LETTERS, 2015, 43 (04) :384-388
[8]   ELLIPSOID BOUNDS FOR CONVEX QUADRATIC INTEGER PROGRAMMING [J].
Buchheim, Christoph ;
Huebner, Ruth ;
Schoebel, Anita .
SIAM JOURNAL ON OPTIMIZATION, 2015, 25 (02) :741-769
[9]   An effective branch-and-bound algorithm for convex quadratic integer programming [J].
Buchheim, Christoph ;
Caprara, Alberto ;
Lodi, Andrea .
MATHEMATICAL PROGRAMMING, 2012, 135 (1-2) :369-395
[10]   A finite branch-and-bound algorithm for nonconvex quadratic programming via semidefinite relaxations [J].
Burer, Samuel ;
Vandenbussche, Dieter .
MATHEMATICAL PROGRAMMING, 2008, 113 (02) :259-282