Understanding the origin for propane non-oxidative dehydrogenation catalysed by d2-d8 transition metals

被引:13
|
作者
Liu, Jianwen [1 ,3 ]
Luo, Wenzhi [1 ]
Yin, Yaru [1 ]
Fu, Xian-Zhu [1 ]
Luo, Jing-Li [1 ,2 ]
机构
[1] Shenzhen Univ, Coll Mat Sci & Engn, Guangdong Res Ctr Interfacial Engn Funct Mat, Shenzhen Key Lab Polymer Sci & Technol, Shenzhen 518060, Peoples R China
[2] Univ Alberta, Dept Chem & Mat Engn, Edmonton, AB T6G 1H9, Canada
[3] Natl Supercomp Ctr Shenzhen, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金;
关键词
Non-oxidative dehydrogenation; C-H activation; DFT; Transition metals; Propane; VANADIUM-OXIDE CATALYSTS; OXIDATIVE DEHYDROGENATION; ACTIVE-SITES; PROPENE; SELECTIVITY; ZRO2; CONSEQUENCES; ACTIVATION; CONVERSION; ISOBUTANE;
D O I
10.1016/j.jcat.2021.02.033
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Non-oxidative dehydrogenation of propane is a potential route to produce more valuable chemical feedstock propene. Understanding of the catalytic origin is essential for high performance catalysts design. Herein, the detailed mechanisms for non-oxidative dehydrogenation of propane catalysed by silica supported vanadium are systematically studied to elucidate a possible reaction network, in which the stepwise dissociative C-H bond activation is consistently most favourable. Consequently, stepwise dissociative C-H bond activation is used to investigate the d(2)-d(8) transition metal-catalysed nonoxidative dehydrogenation of propane. Frontier orbital analysis reveals that non-oxidative dehydrogenation of propane originates from the interaction between the highest occupied molecular orbital (HOMO) of propane and the lowest unoccupied molecular orbital (LUMO) of the catalysts, indicating that the smaller the gap between the HOMO and LUMO, the higher the reaction activity. Moreover, the largest energy barriers for these reactions correlate with the LUMOcatalyst-HOMOpropane gap. A lower LUMOcatalyst-HOMOpropane gap leads to a lower reaction barrier and higher activity of the catalyst. This study provides a new strategy of theoretical catalyst design for non-oxidative propane dehydrogenation by modulating the gap between the HOMO of propane and the LUMO of catalysts. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:333 / 341
页数:9
相关论文
共 20 条
  • [1] The effect of phase composition and crystallite size on activity and selectivity of ZrO2 in non-oxidative propane dehydrogenation
    Zhang, Yaoyuan
    Zhao, Yun
    Otroshchenko, Tatiana
    Han, Shanlei
    Lund, Henrik
    Rodemerck, Uwe
    Linke, David
    Jiao, Haijun
    Jiang, Guiyuan
    Kondratenko, Evgenii V.
    JOURNAL OF CATALYSIS, 2019, 371 : 313 - 324
  • [2] The effect of ZrO2 crystallinity in CrZrOx/SiO2 on non-oxidative propane dehydrogenation
    Han, Shanlei
    Otroshchenko, Tatiana
    Zhao, Dan
    Lund, Henrik
    Rockstroh, Nils
    Thanh Huyen Vuong
    Rabeah, Jabor
    Rodemerck, Uwe
    Linke, David
    Gao, Manglai
    Jiang, Guiyuan
    Kondratenko, Evgenii V.
    APPLIED CATALYSIS A-GENERAL, 2020, 590
  • [3] Controlling activity and selectivity of bare ZrO2 in non-oxidative propane dehydrogenation
    Otroshchenko, Tatiana
    Bulavchenko, Olga
    Thanh, Huyen V.
    Rabeah, Jabor
    Bentrup, Ursula
    Matvienko, Alexander
    Rodemerck, Uwe
    Paul, Benjamin
    Kraehnert, Ralph
    Linke, David
    Kondratenko, Evgenii V.
    APPLIED CATALYSIS A-GENERAL, 2019, 585
  • [4] ZrO2-based unconventional catalysts for non-oxidative propane dehydrogenation: Factors determining catalytic activity
    Otroshchenko, Tatyana
    Kondratenko, Vita A.
    Rodemerck, Uwe
    Linke, David
    Kondratenko, Evgenii V.
    JOURNAL OF CATALYSIS, 2017, 348 : 282 - 290
  • [5] Hydroxyl-Mediated Non-oxidative Propane Dehydrogenation over VOx/γ-Al2O3 Catalysts with Improved Stability
    Zhao, Zhi-Jian
    Wu, Tengfang
    Xiong, Chuanye
    Sun, Guodong
    Mu, Rentao
    Zeng, Liang
    Gong, Jinlong
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (23) : 6791 - 6795
  • [6] The enhancing effect of Co2+ on propane non-oxidative dehydrogenation over supported Co/ZrO2 catalysts
    Zhang, Qiyang
    Li, Yuming
    Otroshchenko, Tatiana
    Kondratenko, Vita A.
    Wu, Kai
    Fedorova, Elizaveta A.
    Doronkin, Dmitry E.
    Bartling, Stephan
    Lund, Henrik
    Jiang, Guiyuan
    V. Kondratenko, Evgenii
    JOURNAL OF CATALYSIS, 2024, 432
  • [7] Kinetics of non-oxidative propane dehydrogenation on Cr2O3 and the nature of catalyst deactivation from first-principles simulations
    Hus, Matej
    Kopac, Drejc
    Likozar, Blaz
    JOURNAL OF CATALYSIS, 2020, 386 : 126 - 138
  • [8] Highly efficient Bi-promoted ZrO2-based materials for non-oxidative propane dehydrogenation
    Otroshchenko, Tatiana
    Kondratenko, Evgenii V. V.
    CHEMICAL COMMUNICATIONS, 2023, 59 (19) : 2775 - 2778
  • [9] Facilitating the reduction of V-O bonds on VOx/ZrO2 catalysts for non-oxidative propane dehydrogenation
    Xie, Yufei
    Luo, Ran
    Sun, Guodong
    Chen, Sai
    Zhao, Zhi-Jian
    Mu, Rentao
    Gong, Jinlong
    CHEMICAL SCIENCE, 2020, 11 (15) : 3845 - 3851
  • [10] Non-Oxidative Propane Dehydrogenation on CrOx-ZrO2-SiO2 Catalyst Prepared by One-Pot Template-Assisted Method
    Golubina, Elena, V
    Kaplin, Igor Yu
    Gorodnova, Anastasia, V
    Lokteva, Ekaterina S.
    Isaikina, Oksana Ya
    Maslakov, Konstantin, I
    MOLECULES, 2022, 27 (18):